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Introduction: Studies have found a varying degree of cognitive, psychosocial, and

functional impairments in patients with unruptured intracranial aneurysms (UIAs),

whereas the neural correlates underlying these impairments remain unknown.

Methods: To examine the brain morphological alterations and white matter

lesions in patients with UIA, we performed a range of structural analyses to

examine the brain morphological alterations in patients with UIA compared

with healthy controls (HCs). Twenty-one patients with UIA and 23 HCs were

prospectively enrolled into this study. Study assessment consisted of a brain

magnetic resonance imaging (MRI) scan with high-resolution T1-weighted and

T2-weighted imaging data, a Montreal Cognitive Assessment (MoCA), and

laboratory tests including blood inflammatory markers and serum lipids. Brain MRI

data were processed for cortical thickness, local gyrification index (LGI), volume

and shape of subcortical nuclei, and white matter lesions.

Results: Compared to the HCs, patients with UIA showed no significant

differences in cortical thickness but decreased LGI values in the right posterior

cingulate cortex, retrosplenial cortex, cuneus, and lingual gyrus. In addition,

decreased LGI values correlated with decreased MoCA score (r = 0.498, p = 0.021)

and increased white matter lesion scores (r = −0.497, p = 0.022). The LGI values

were correlated with laboratory values such as inflammatory markers and serum

lipids. Patients with UIA also showed significant regional atrophy in bilateral

thalami as compared to the HCs. Moreover, the LGI values were significantly

correlated with thalamic volume in the HCs (r = 0.4728, p = 0.0227) but not in

the patients with UIA (r = 0.11, p = 0.6350).
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Discussion: The decreased cortical gyrification, increased white matter lesions,

and regional thalamic atrophy in patients with UIA might be potential neural

correlates of cognitive changes in UIA.

KEYWORDS

thalamic atrophy, local gyrification index, cortical gyrification, unruptured intracranial
aneurysm, MRI

Introduction

Unruptured intracranial aneurysm (UIA) is a serious
cerebrovascular disease; up to 50% of patients who experience
UIA rupture may die or suffer long-term disabilities (Towgood
et al., 2004). In addition, patients with UIA may have cognitive,
psychosocial, and functional impairments (Towgood et al., 2005;
Bonares et al., 2016), resulting in diminished quality of life (van
der Schaaf et al., 2002; Bonares et al., 2014). Existing studies of UIA
have mainly focused on rupture risk assessment and treatment
strategy. However, the potential neural mechanism underlying
the cognitive changes in patients with UIA remains unknown.
Notably, this knowledge can assist in decision-making for clinical
management of UIA, such as the most appropriate operation time,
follow-up strategy, and even necessary interventions to prevent
cognitive impairment, so as to improve the quality of life of patients
with UIA.

Neuroimaging studies have shown significant associations
among brain morphological alterations such as the cortical
gyrification pattern, white matter hyperintense lesions, and
cognitive impairments in patients with neurodegenerative disease
(Kievit et al., 2014; Prins and Scheltens, 2015; Tang et al., 2021).
However, there is little information on whether patients with UIA
may have distinct brain morphological patterns and whether these
structural characteristics are associated with cognitive functioning.
Notably, the risk factors for cerebrovascular disease, including
hypertension, atherosclerosis, smoking, and neuroinflammation
(Hokari et al., 2014; Kang et al., 2015), are known to affect
brain structure (Wiseman et al., 2004; Etminan and Rinkel, 2016;
Chesebro et al., 2020; Durazzo et al., 2020; Zeki Al Hazzouri
et al., 2021). For instance, atherosclerosis and hypertension are
associated with cortical thinning, brain atrophy, and white matter
lesions (Wiseman et al., 2004; Durazzo et al., 2020). UIA and
cerebrovascular disease share common risk factors, which may
increase the occurrence and progression, and even rupture of
UIAs. We therefore hypothesized that UIA may be associated with
alterations in brain morphology and white matter integrity.

In the present study, we assessed brain morphological
alterations in patients with UIA compared to healthy controls
(HCs). Specifically, surface-based cortical thickness and local
gyrification index (LGI) from brain magnetic resonance imaging
(MRI) were analyzed to characterize morphological alterations of
the cerebral cortex. In addition, the differences in volume and shape
of the subcortical structures and white matter lesions were also
examined for both the patients with UIA and HCs. We aimed

to evaluate candidate brain structural alterations that could be
structural correlates of cognitive functioning in patients with UIA.

Materials and methods

Subjects

Consecutive patients with UIA that was radiologically
confirmed using brain computed tomography angiography
(CTA) and digital subtraction angiography (DSA) scans were
prospectively enrolled from January 1, 2019, to July 30, 2019. For
comparison, age- and sex-matched HCs were recruited from the
local community. Patients and HCs with a history of brain injury,
epilepsy, neurodegenerative disease (such as Alzheimer’s disease
and Parkinson’s disease), diabetes, and hypertension (moderate
or severe) were excluded from this study. Radiological data,
including routine brain MRI scans for both patients with UIA
and the HCs, as well as CTA images and DSA images for the
patients, were obtained with our standard scanning protocols. The
main reasons for patients with UIA to receive a brain MRI scan
included dizziness (n = 16, 76.2%), a history of transient ischemic
attack (n = 6, 28.6%), and complaints of subjective memory loss
(n = 10, 47.6%).

Clinical and neuropsychological
assessment

The demographic and clinical characteristics, radiological
scans, and laboratory blood test results for patients with UIA were
obtained from their medical records. The blood test results for
the patients included the following: lymphocyte count, neutrophil-
to-lymphocyte ratio (NLR), platelet count, serum lipids [total
cholesterol (TC), total glyceride (TG), low-density lipoprotein
(LDL), and high-density lipoprotein (HDL)], and inflammatory
markers [tumor necrosis factor-alpha (TNF-α), interleukin 1 beta
(IL-1β), interleukin 6 (IL-6), and interleukin 10 (IL-10)]. The
patients with UIA were also assessed using the ELAPSS (Earlier
subarachnoid hemorrhage, aneurysm Location, Age, Population,
aneurysm Size and Shape) score for predicting the risk of
UIA growth (Backes et al., 2017) and the PHASES (Population,
Hypertension, Age, Size of aneurysm, Earlier subarachnoid
aneurysm from another aneurysm, Site of aneurysm) score for
management of UIA (Bijlenga et al., 2017).
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All participants completed a set of questionnaires administered
by a neuropsychologist within 72 hours of the planned hospital
admission for treatment of UIA. These questionnaires for assessing
cognition, depression, and anxiety level included the Montreal
Cognitive Assessment (MoCA) (Nasreddine et al., 2005), the
Patient Health Questionnaire-9 (PHQ-9)(Syed, 2013), and the
General Anxiety Disorder-7 (GAD-7) (Spitzer et al., 2006). The
HCs underwent the same questionnaire assessments as the patients
with UIA. This study was approved by the Ethics Committee and
Institutional Review Board in our institution (IRB No. 201812104).
Written informed consent was obtained from all participants.

Data acquisition

A T1-weighted MPRAGE (Magnetization Prepared –
RApid Gradient Echo) sequence with whole-brain
coverage was performed for all participants [acquisition
matrix 240 mm × 256 mm × 176 mm, voxel size
1.0 mm × 1.0 mm × 1.0 mm, repetition time (TR)/echo
time (TE) 8,020/50 ms, 30 interleaved slices with no gap] using the
same Siemens MAGNETOM Prisma 3T MRI scanner. A Siemens
parallel imaging implementation with iPAT = 2 was used to
accelerate the data acquisition by a factor of 2, which reduced
the acquisition time from 8 to 4 min. Additional imaging data,
including the T2-weighted images and fluid attenuation inversion
recovery (FLAIR) sequence, were also acquired for assessing
white matter lesions.

Cortical thickness and gyrification

The T1-weighted brain MRI data of each participant was
processed using FreeSurfer1 to obtain the cortical thickness and
LGI measurements. Specifically, the individual T1-weighted images
were segmented to estimate the voxel-based gray/white matter
boundary, which was triangulated to obtain a triangle-based
gray/white matter boundary surface. This triangle-based gray/white
matter surface was then topologically corrected to generate a
refined gray/white matter surface (i.e., the white surface). The
white surface was deformed outward with a deformable surface
algorithm to generate the pial surface. The cortical thickness map
of each participant was calculated by measuring the distance
between the white surface and the pial surface using the T-average
algorithm. The LGI map was obtained by measuring the ratio of
the area of a circular region on the pial surface to the area of a
corresponding circular region on the triangulated convex hull of
the pial surface (Schaer et al., 2008). Prior to statistical analysis,
the individual cortical thickness and LGI maps were resampled and
further smoothed using a Gaussian kernel with a full-width-at-half-
maximum of 20 and 10 mm, respectively.

Subcortical volume and shape

Both volumetric and shape analyses were performed on the
subcortical structures, including bilateral thalamus, hippocampus,

1 https://surfer.nmr.mgh.harvard.edu/

amygdala, putamen, pallidum, and caudate. The volumes of these
subcortical nuclei were extracted using the automated procedure
for volumetric measures of the brain structures implemented in
FreeSurfer. Shape analyses of these subcortical structures were
conducted using the FIRST procedure in the FMRIB software
library (FSL). Briefly, for each subcortical structure, FIRST created
a surface mesh consisting of a set of vertices and triangles using
a deformable mesh model. As the number of vertices for each
structure was fixed, the spatial location of the corresponding
vertices could be compared across participants. Given that the
surface mesh of each participant resided in the native space and
therefore may have different orientations and/or positions, we
aligned the surface mesh of each participant to the mean surface
in standard space to remove possible pose differences (rotation and
translation) of each structure.

White matter lesions

White matter lesions were assessed on the T2-weighted and
FLAIR images according to a 4-point rating scale method proposed
by Wahlund et al. (2001). Briefly, white matter changes on
brain MRI were defined as hyperintense lesions ≥5 mm on T2-
weighted, or FLAIR images. All ratings were performed by two
experienced neuroradiologists independently (LZ and FZ, with
5 and 12 years of experience, respectively). If there was any
discrepancy, a third senior neuroradiologist (ZH, with more than
25 years of experience) would be involved in the assessment and
consensus would be reached through discussion among the three
neuroradiologists.

Statistical analyses

Vertex-wise contrasts of the cortical thickness and LGI maps
between patients with UIA and HCs were performed using the
SurfStat package2 in MATLAB. Specifically, for each vertex on
the pial surface, we fitted a generalized linear model (GLM) with
diagnosis, age, and sex as covariates. A vertex-wise p < 0.005 was
used to define potential clusters of difference. Using random field
theory (RFT), the resulting clusters were then corrected at the
cluster level for multiple comparisons. The significance level for
clusters was set at RFT-corrected p < 0.05.

Vertex-wise comparison of the spatial location in each
subcortical structure between the two groups was performed using
GLM in FSL with diagnosis, age, and sex as covariates. A non-
parametric permutation test with 5,000 repetitions was then applied
to obtain the group-wise statistics. The results were corrected for
multiple comparisons using threshold-free cluster enhancement
(TFCE). The significance level was set at TFCE-corrected p < 0.05.

Pearson’s correlation coefficient was used to determine the
association between morphological alteration and clinical data.
Spearman’s rank correlation coefficient was used to determine
the association between morphological alteration and the white
matter (WM) lesions.

2 http://www.math.mcgill.ca/keith/surfstat/
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Results

Demographic, clinical, and
neuropsychological characteristics

A total of 21 patients with UIA and 23 HCs were included
in this study. The demographic information, clinical data, and
laboratory values are presented in Table 1. There were no
significant differences in age, sex, and body mass index between
the patients with UIA and the HCs. However, the patients with
UIA had lower MoCA scores than HCs (p < 0.01). There were no
significant differences between the two groups in the PHQ-9 score
for depression (p = 0.513) and GAD-7 score for anxiety (p = 0.759).

Cortical thickness and LGI

There was no significant difference in cortical thickness
between the two groups (RFT-corrected p > 0.05). Compared with
the HCs, the patients with UIA showed significantly reduced LGI
in a cluster in the right hemisphere, involving the right posterior
cingulate cortex, retrosplenial cortex, as well as cuneus, and lingual
gyrus (cluster size = 5,179 vertices, peak t value = 3.4616, peak
Talairach coordinates: x = 6.42, y = −60.37, z = 11.92) (Figure 1).

Associations between LGI and clinical
data

The LGI values for the significant cluster were positively
correlated with the MoCA scores (r = 0.498, p = 0.021) (Figure 2A)
but not significantly correlated with the depression PHQ-9 scores
or anxiety GAD-7 scores (p > 0.05). The LGI values for the
significant cluster were negatively correlated with the PHASES
and ELAPSS aneurysm scores in patients with UIA (r = −0.440,
p = 0.046; r = −0.487, p = 0.025; respectively) (Figures 2B, C).

There were significant correlations between the LGI values
and laboratory data. In patients with UIA, the LGI values were
negatively correlated with lipid values such as TC (r = −0.048,
p = 0.028) but positively correlated with HDL levels (r = 0.539,
p = 0.012). Also, in patients with UIA, the LGI values were
negatively correlated with blood PLT counts (r = 0.546, p = 0.010)
and inflammatory markers such as TNF-α (r = −0.460, p = 0.036)
(Figure 2D) and IL-1β (r = −0.462, p = 0.035). The LGI values were
also negatively correlated with the white matter lesions (r = −0.497,
p = 0.022) in patients with UIA.

Subcortical volume and shape

Patients with UIA showed significant bilateral regional atrophy
in the medial and posterior parts of the thalami as compared to
the HCs (TFCE-corrected p< 0.05) (Figure 3). However, there was
no significant difference in the total thalamic volume between the
two groups (p = 0.257). There were no significant differences in the
shape and volume of other subcortical structures between the two
groups.

TABLE 1 Participant information.

Patients with
UIA (n = 21)

Healthy
controls (n = 23)

p-Value

Demographic characteristics

Age (years) 55.0 (48.5, 61.0) 55.0 (48.0, 57.0) 0.54

Sex (male/female) 5/16 5/18 0.87

Body mass index 22.76 (21.33, 26.27) 23.14 (21.64,25.20) 0.63

Education (years) 9.0(6.00, 12.75) 9.0(6.75, 12.00) 0.82

Neuropsychological questionnaires

Cognitive function,
MoCA

24 (20, 27) 27 (26, 28) <0.01

Depression, PHQ-9 45 (35, 49) 43 (35, 47) 0.513

Anxiety, GAD-7 37 (32, 44) 37 (32, 42) 0.759

UIA data

ELAPSS score 10 (5, 17) –

PHASES score 3 (0, 6) –

Location of aneurysm

ACA 9 (42.86%) –

PCA (left) 4 (19.05%) –

PCA (right) 2 (9.52%) –

MCA (left) 4 (19.05%) –

MCA (right) 2 (9.52%) –

Size of aneurysm (mm)

≤3.9 3 (14.29%) –

4.0∼6.9 12 (57.14%) –

7.0∼12.9 3 (14.29%) –

13∼24.9 2 (9.52%) –

≥25.0 1 (4.76%) –

Laboratory data

Routine blood
markers

–

Lymphocyte count 1.80 (1.30, 2.15) –

Neutrophil count 3.30 (2.85, 4.60) –

NLR 2.18 (1.34, 2.75) –

Platelet 202.0 (180.0, 230.5) –

Inflammatory markers –

TNF-α 3.83 (2.86, 6.76) –

IL-1β 1.74 (1.20–3.85) –

Serum lipids –

TC 4.89 (3.87, 5.95) –

HDL 1.05 (0.81, 1.42) –

Continuous variables are presented as median (interquartile range). Between-group
differences in these variables were tested using the Mann–Whitney U test or Chi-square test.
ACA, anterior communicating artery; PCA, posterior communicating artery; MCA, middle
cerebral artery; NLR, neutrophil-to-lymphocyte ratio; TNF-α, tumor necrosis factor-alpha;
IL-1β, interleukin 1 beta; TC, total cholesterol; HDL, high-density lipoprotein.

The LGI values for the significant cluster were positively
correlated with the total thalamic volumes (r = 0.4728, p = 0.0227)
in the HCs but not in patients with UIA (r = 0.11, p = 0.6350)
(Figure 4).
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FIGURE 1

Brain regions with decreased local gyrification index (LGI) in patients with unruptured intracranial aneurysm. The blue-colored brain region in the
right lower panel indicates a cluster with significantly reduced LGI in the right hemisphere, involving the right posterior cingulate cortex, retrosplenial
cortex, cuneus, and lingual gyrus. The results were random field theory (RFT)-corrected. The color bar denotes the RFT-corrected p-value.

FIGURE 2

Correlation of local gyrification index (LGI) with cognitive, clinical, and laboratory test scores in patients with unruptured intracranial aneurysm. (A)
Correlation with the MoCA score. (B) Correlation with the PHASES aneurysm score. (C) Correlation with the ELAPSS aneurysm score. (D) Correlation
with inflammatory marker (TNF-α). MoCA, Montreal Cognitive Assessment; PHASES, Population, Hypertension, Age, Size of aneurysm, Earlier
subarachnoid aneurysm from another aneurysm, Site of aneurysm; ELAPSS, Earlier subarachnoid hemorrhage, aneurysm Location, Age, Population,
aneurysm Size and Shape; TNF-α, tumor necrosis factor-alpha.
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FIGURE 3

Regional thalamic atrophy in patients with unruptured intracranial aneurysm. The blue-colored areas in the thalamus indicate the regional atrophy in
the medial and posterior aspects of the thalamus. The results were threshold-free cluster enhancement-corrected for multiple comparisons.

White matter lesions

For the patients with UIA, 5 out of 21 patients were rated as 1
for white matter lesion (i.e., with 1 focal lesion >5 mm) (23.8%), 1
out of 21 patients was rated as 2 (i.e., with >1 focal lesion) (4.7%),
and 15 out of 21 patients were rated as 0 (i.e., with no lesion)
(71.4%). For the HCs, only 1 patient was rated as 2, while the
remaining HCs were all rated as 0 (95.7%). The mean white matter
lesion score in patients with UIA was significantly higher than that
of the HCs (p = 0.038).

Discussion

In this study, we found a distinct pattern of decreased
gyrification in a specific right posterior cortical region, which
was correlated with cognitive testing scores, aneurysm assessment
scores, blood lipid values, and inflammatory markers in patients
with UIA. In addition, we found shape alterations in the thalamus
and increased white matter lesions in patients with UIA. These
results support the notion of neural correlates for cognitive
functioning in patients with UIA.

Our study identified decreased gyrification in the key hubs of
the default mode network (DMN) including the right posterior
cingulate cortex and retrosplenial cortex in patients with UIA
(Fransson and Marrelec, 2008; Vann et al., 2009). The DMN has
been implicated in cognitive function, social cognition, memory,
and emotional processing (Raichle et al., 2001; Raichle, 2015; Fox

et al., 2017; Satpute and Lindquist, 2019). Indeed, patients with UIA
have impaired cognitive function, visual attention, psychosocial
functioning, delayed recall, and psychiatric symptoms such as
depression and anxiety (van der Schaaf et al., 2002; Towgood et al.,
2005; Bonares et al., 2014, 2016). It is therefore reasonable to
speculate that our observed LGI decrease may be related to the
cognitive dysfunction in patients with UIA. This speculation was
supported by our finding of a positive correlation between the
LGI values and MoCA scores in patients with UIA. In addition,
the lack of a significant correlation between LGI and the scores
for depression and anxiety in our study was also understandable,
as these symptoms were usually transient and difficult to assess
(Yamashiro et al., 2007; Su et al., 2014). Furthermore, our study
showed decreased LGI in the visual cortices (lingual gyrus and
cuneus) in patients with UIA, which may account for the visual
impairments and the associated cognitive dysfunction in these
patients (Bonares et al., 2016).

Prior studies have reported that the risk factors for UIA,
such as smoking and hypertension, may affect thalamic volume
(Jennings et al., 2012; Liao et al., 2012; Hanlon et al., 2016),
indicating that the thalamus in patients with UIA is vulnerable
to alterations. However, we found no significant differences in
total thalamic volume between the patients and HCs. This finding
was not a surprise, as brain structures such as the thalamus
may compensate, with some subregions decreasing in volume and
some increasing in volume to maintain a constant total volume
for normal function. In our shape analysis of subcortical nuclei,
we found the expected significant bilateral regional atrophy in
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FIGURE 4

Association between local gyrification index (LGI) and total thalamic volume for patients with unruptured intracranial aneurysm (UIA) and healthy
controls (HCs). The blue circles indicate the data for the HCs and the red circles indicate the data for patients with UIA.

the medial and posterior parts of the thalami. The underlying
mechanism for the thalamic shape modification was not clear. We
speculate it may be related to the overall function of the thalamus
as a relay station for transferring information to the cortex (Wolff
and Vann, 2019). The risk factors for UIA, such as hypertension,
neuroinflammation, and arteriosclerosis, may predispose the brain
to injury and the thalamus may be particularly sensitive to the
insult and undergo internal shape modification. For instance, the
mediodorsal thalamus is involved in cognition, especially learning
and memory (Wolff and Vann, 2019), and therefore it was not
surprising that our study showed a reduction in the mediodorsal
thalamus and diminished cognitive function in patients with UIA.
Our study also showed a lack of correlation between gyrification
and the total thalamic volume in patients with UIA but the
correlation was present in the HCs. Considering the extensive
reciprocity of projections between cortical and thalamic areas in the
thalamocortical circuits (Behrens et al., 2003; Dong et al., 2012; Wei
et al., 2019), this finding implies that thalamocortical pathways may
be disrupted in patients with UIA.

Our study showed a distinct gyrification pattern, regional
thalamic atrophy, and white matter lesions in patients with
UIA, implying that patients with UIA undergo neuroplasticity
to maintain function. First, the risk factors for UIA can have
detrimental effects on white matter integrity and contribute to
the occurrence of white matter lesions (Wersching et al., 2010;
Ederle et al., 2013; Prins and Scheltens, 2015; Chesebro et al.,
2020). The affected white matter may alter the tension along
the underlying white matter tracts, which connect the subcortical

structures to the cerebral cortex, resulting in cortical changes (Van
Essen, 1997). Specifically, we speculate that the tension of the
thalamocortical tract in patients with UIA may be altered by white
matter lesions, leading to diminished connectivity to the cortex
and contributing to the decreased gyrification. The cortex may
also reciprocally affect the thalamus through inter-connectivity,
resulting in regional thalamic atrophy. This speculation was
supported by our observation of a correlation between the LGI
values and the white matter lesions. Secondly, we identified a
correlation between the cortical LGI values and the risk factor
profiles, including inflammatory markers and serum lipids, which
are collected as part of atherosclerosis evaluation in patients
with UIA. We also identified a correlation between the LGI
values and aneurysm assessment scores (ELAPSS and PHASES)
in patients with UIA. These results indicate that the risk factor
profile was associated with alterations in the cortical morphology in
addition to white matter integrity. The presence of changes in both
cortical morphology and white matter in patients with UIA implies
potential compensatory neuroplasticity. However, the exact neural
mechanism underlying the structural alterations remains unclear
and further research is needed to understand the implications of
such changes on cognitive function in patients UIA.

There were a few limitations to this study. First, this study
had a relatively small sample size, which limited our ability to
perform subgroup analyses based on the location and size of the
aneurysms. Future studies with larger sample size are warranted to
explore the potential impact of these factors on brain morphology
and clinical manifestation in patients with UIA. Second, the
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patients in our study were recruited prior to treatment, but all
patients subsequently underwent treatment for their UIAs either
through craniotomy for aneurysm clipping or endovascular coiling.
Therefore, the patients in our study may represent a subset of
UIA patients with more serious UIAs, a higher risk of UIA
rupture, and greater cognitive dysfunction than patients who did
not undergo treatment. Third, we could not quantitatively assess
the detailed white matter microstructural abnormalities across the
whole brain or within the thalamocortical network due to the lack
of diffusion tensor imaging data. Lastly, we could not characterize
the longitudinal brain structural changes in these patients due
to the cross-sectional design of this study and lack of follow-
up data on their cognitive function after the UIA treatment.
Despite the limitations, this study has its merit as it generated
promising preliminary data on brain morphological alterations
and their associations with cognitive function. The results are
expected to motivate further research on the effects of UIA on
brain and cognition.

Conclusion

In summary, we found decreased cortical gyrification,
increased white matter lesions, and regional thalamic atrophy in
patients with UIA. Our results imply that these brain structural
alterations might be the neural correlates underlying the functional
alterations in patients with UIA.
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