1,890 research outputs found

    Physical Conditoins in Orion's Veil II: A Multi-Component Study of the Line of Sight Toward the Trapezium

    Full text link
    Orion's Veil is an absorbing screen that lies along the line of sight to the Orion H II region. It consists of two or more layers of gas that must lie within a few parsecs of the Trapezium cluster. Our previous work considered the Veil as a whole and found that the magnetic field dominates the energetics of the gas in at least one component. Here we use high-resolution STIS UV spectra that resolve the two velocity components in absorption and determine the conditions in each. We derive a volume hydrogen density, 21 cm spin temperature, turbulent velocity, and kinetic temperature, for each. We combine these estimates with magnetic field measurements to find that magnetic energy significantly dominates turbulent and thermal energies in one component, while the other component is close to equipartition between turbulent and magnetic energies. We observe molecular hydrogen absorption for highly excited v, J levels that are photoexcited by the stellar continuum, and detect blueshifted S III and P III. These ions must arise from ionized gas between the mostly neutral portions of the Veil and the Trapezium and shields the Veil from ionizing radiation. We find that this layer of ionized gas is also responsible for He I absorption in the Veil, which resolves a 40-year-old debate on the origin of He I absorption towards the Trapezium. Finally, we determine that the ionized and mostly atomic layers of the Veil will collide in less than 85,000 years.Comment: 43 pages, 15 figures, to be published in Ap

    Physical Conditions in Orion's Veil

    Get PDF
    Orion's veil consists of several layers of largely neutral gas lying between us and the main ionizing stars of the Orion nebula. It is visible in 21cm H I absorption and in optical and UV absorption lines of H I and other species. Toward the Trapezium, the veil has two remarkable properties, high magnetic field (~100 microGauss) and a surprising lack of molecular hydrogen given its total hydrogen column density. Here we compute photoionization models of the veil to establish its gas density and its distance from the Trapezium. We use a greatly improved model of the hydrogen molecule that determines level populations in ~1e5 rotational/vibrational levels and provides improved estimates of molecular hydrogen destruction via the Lyman-Werner bands. Our best fit photoionization models place the veil 1-3 pc in front of the star at a density of 1e3-1e4 cubic centimeters. Magnetic energy dominates the energy of non-thermal motions in at least one of the 21cm H I velocity components. Therefore, the veil is the first interstellar environment where magnetic dominance appears to exist. We find that the low ratio of molecular to atomic hydrogen (< 1e-4) is a consequence of high UV flux incident upon the veil due to its proximity to the Trapezium stars and the absence of small grains in the region.Comment: 45 pages, 20 figures, accepted for publication in Ap

    Dust in 3C324

    Get PDF
    The results of a deep submillimetre observation using SCUBA of the powerful radio galaxy 3C324, at redshift z=1.206, are presented. At 850 microns, emission from the location of the host radio galaxy is marginally detected at the 4.2 sigma level, 3.01 +/- 0.72 mJy, but there is no detection of emission at 450 microns to a 3 sigma limit of 21 mJy. A new 32 GHz radio observation using the Effelsberg 100m telescope confirms that the sub-millimetre signal is not associated with synchrotron emission. These observations indicate that both the mass of warm dust within 3C324, and the star formation rate, lie up to an order of magnitude below the values recently determined for radio galaxies at z = 3 to 4. The results are compared with dust masses and star formation rates derived in other ways for 3C324.Comment: 5 pages LaTeX, including 1 figure. Accepted for publication in MNRA

    New fire diurnal cycle characterizations to improve fire radiative energy assessments made from low-Earth orbit satellites sampling

    Get PDF
    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimations are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments like the MODerate-resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers. Specifically, we assess how representing the fire diurnal cycle affects FRP and FRE estimations when using data collected at MODIS overpasses. Using data assimilation we explored three different methods to estimate hourly FRE, based on an incremental sophistication of parameterizing the fire diurnal cycle. We sampled data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) at MODIS detection opportunities to drive the three approaches. The full SEVIRI time-series, providing full coverage of the diurnal cycle, were used to evaluate the results. Our study period comprised three years (2010–2012), and we focussed on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal cycle as done currently in some approaches caused structural errors, while generally overestimating FRE. Including information on the climatology of the fire diurnal cycle provided the most promising avenue to improve FRE estimations. This approach also improved the performance on relatively high spatiotemporal resolutions, although only when aggregating model results to coarser spatial and/or temporal scale good correlation was found with the full SEVIRI hourly reference dataset. In general model performance was best in areas of frequent fire and low errors of omission. We recommend the use of regionally varying fire diurnal cycle information within the Global Fire Assimilation System (GFAS) used in the Copernicus Atmosphere Monitoring Services, which will improve FRE estimates and may allow for further reconciliation of biomass burning emission estimates from different inventories

    Fire-Related Carbon Emissions from Land Use Transitions in Southern Amazonia

    Get PDF
    Various land-use transitions in the tropics contribute to atmospheric carbon emissions, including forest conversion for small-scale farming, cattle ranching, and production of commodities such as soya and palm oil. These transitions involve fire as an effective and inexpensive means for clearing. We applied the DECAF (DEforestation CArbon Fluxes) model to Mato Grosso, Brazil to estimate fire emissions from various land-use transitions during 2001-2005. Fires associated with deforestation contributed 67 Tg C/yr (17 and 50 Tg C/yr from conversion to cropland and pasture, respectively), while conversion of savannas and existing cattle pasture to cropland contributed 17 Tg C/yr and pasture maintenance fires 6 Tg C/yr. Large clearings (>100 ha/yr) contributed 67% of emissions but comprised only 10% of deforestation events. From a policy perspective, results imply that intensification of agricultural production on already-cleared land and policies to discourage large clearings would reduce the major sources of emissions from fires in this region. Copyright 2008 by the American Geophysical Union

    Unfolding-Based Process Discovery

    Get PDF
    This paper presents a novel technique for process discovery. In contrast to the current trend, which only considers an event log for discovering a process model, we assume two additional inputs: an independence relation on the set of logged activities, and a collection of negative traces. After deriving an intermediate net unfolding from them, we perform a controlled folding giving rise to a Petri net which contains both the input log and all independence-equivalent traces arising from it. Remarkably, the derived Petri net cannot execute any trace from the negative collection. The entire chain of transformations is fully automated. A tool has been developed and experimental results are provided that witness the significance of the contribution of this paper.Comment: This is the unabridged version of a paper with the same title appearead at the proceedings of ATVA 201

    Observations of the Hubble Deep Field South with the Infrared Space Observatory - II. Associations and star formation rates

    Get PDF
    We present results from a deep mid-IR survey of the Hubble Deep Field South (HDF-S) region performed at 7 and 15um with the CAM instrument on board ISO. We found reliable optical/near-IR associations for 32 of the 35 sources detected in this field by Oliver et al. (2002, Paper I): eight of them were identified as stars, one is definitely an AGN, a second seems likely to be an AGN, too, while the remaining 22 appear to be normal spiral or starburst galaxies. Using model spectral energy distributions (SEDs) of similar galaxies, we compare methods for estimating the star formation rates (SFRs) in these objects, finding that an estimator based on integrated (3-1000um) IR luminosity reproduces the model SFRs best. Applying this estimator to model fits to the SEDs of our 22 spiral and starburst galaxies, we find that they are forming stars at rates of ~1-100 M_sol/yr, with a median value of ~40M_sol/yr, assuming an Einstein - de Sitter universe with a Hubble constant of 50 km/s/Mpc, and star formation taking place according to a Salpeter (1955) IMF across the mass range 0.1-100M_sol. We split the redshift range 0.0<z<0.6 into two equal-volume bins to compute raw estimates of the star formation rate density contributed by these sources, assuming the same cosmology and IMF as above and computing errors based on estimated uncertainties in the SFRs of individual galaxies. We compare these results with other estimates of the SFR density made with the same assumptions, showing them to be consistent with the results of Flores et al. (1999) from their ISO survey of the CFRS 1415+52 field. However, the relatively small volume of our survey means that our SFR density estimates suffer from a large sampling variance, implying that our results, by themselves, do not place tight constraints on the global mean SFR density.Comment: Accepted for MNRAS. 23 pages, 10 figures (Figs. 4&6 included here as low resolution JPEGS), latex, uses mn,epsfig. Further information and full resolution versions of Figs 4&6 available at http://astro.ic.ac.uk/hdfs (v2: full author list added

    Continental-Scale Partitioning of Fire Emissions During the 1997 to 2001 El Niño/La Niña Period

    Get PDF
    During the 1997 to 1998 El Niño, drought conditions triggered widespread increases in fire activity, releasing CH_4 and CO_2 to the atmosphere. We evaluated the contribution of fires from different continents to variability in these greenhouse gases from 1997 to 2001, using satellite-based estimates of fire activity, biogeochemical modeling, and an inverse analysis of atmospheric CO anomalies. During the 1997 to 1998 El Niño, the fire emissions anomaly was 2.1 ± 0.8 petagrams of carbon, or 66 ± 24% of the CO_2 growth rate anomaly. The main contributors were Southeast Asia (60%), Central and South America (30%), and boreal regions of Eurasia and North America (10%)

    Global burned area and biomass burning emissions from small fires

    Get PDF
    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001–2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia—regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes

    Fine Scale Temperature Fluctuations in the the Orion Nebula and the t^2 Problem

    Get PDF
    We present a high spatial resolution map of the columnar electron temperature (Tc) of a region to the south west of the Trapezium in the Orion Nebula. This map was derived from Hubble Space Telescope images that isolated the primary lines of HI for determination of the local extinction and of the OIII lines for determination of Tc. Although there is no statistically significant variation of Tc with distance from the dominant ionizing star theta1-Ori-C, we find small scale variations in the plane of the sky down to a few arcseconds that are compatible with the variations inferred from comparing the value of Te derived from forbidden and recombination lines, commonly known as the t^2 problem. We present other evidence for fine scale variations in conditions in the nebula, these being variations in the surface brightness of the the nebula, fluctuations in radial velocities, and ionization changes. From our Tc map and other considerations we estimate that t^2=0.028 +-0.006 for the Orion nebula. Shadowed regions behind clumps close to the ionization front can make a significant contribution to the observed temperature fluctuations, but they cannot account for the t^2 values inferred from several methods of temperature determination. It is shown that an anomalous broadening of nebular emission lines appears to have the same sense of correlation as the temperature anomalies, although a causal link is not obvious.Comment: 53 pages, 13 images, many of the images have been downgraded to be able to fit within the astro-ph file size limit
    • …
    corecore