131 research outputs found

    Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation

    Get PDF
    Background: When many (up to millions) of statistical tests are conducted in discovery set analyses such as genome-wide association studies (GWAS), approaches controlling family-wise error rate (FWER) or false discovery rate (FDR) are required to reduce the number of false positive decisions. Some methods were specifically developed in the context of high-dimensional settings and partially rely on the estimation of the proportion of true null hypotheses. However, these approaches are also applied in low-dimensional settings such as replication set analyses that might be restricted to a small number of specific hypotheses. The aim of this study was to compare different approaches in low-dimensional settings using (a) real data from the CKDGen Consortium and (b) a simulation study. Results: In both application and simulation FWER approaches were less powerful compared to FDR control methods, whether a larger number of hypotheses were tested or not. Most powerful was the q-value method. However, the specificity of this method to maintain true null hypotheses was especially decreased when the number of tested hypotheses was small. In this low-dimensional situation, estimation of the proportion of true null hypotheses was biased. Conclusions: The results highlight the importance of a sizeable data set for a reliable estimation of the proportion of true null hypotheses. Consequently, methods relying on this estimation should only be applied in high-dimensional settings. Furthermore, if the focus lies on testing of a small number of hypotheses such as in replication settings, FWER methods rather than FDR methods should be preferred to maintain high specificity

    Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations.

    Get PDF
    Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P \u3c 1.25×10−8) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension

    Complex Segregation Analysis of Pedigrees from the Gilda Radner Familial Ovarian Cancer Registry Reveals Evidence for Mendelian Dominant Inheritance

    Get PDF
    Familial component is estimated to account for about 10% of ovarian cancer. However, the mode of inheritance of ovarian cancer remains poorly understood. The goal of this study was to investigate the inheritance model that best fits the observed transmission pattern of ovarian cancer among 7669 members of 1919 pedigrees ascertained through probands from the Gilda Radner Familial Ovarian Cancer Registry at Roswell Park Cancer Institute, Buffalo, New York.Using the Statistical Analysis for Genetic Epidemiology program, we carried out complex segregation analyses of ovarian cancer affection status by fitting different genetic hypothesis-based regressive multivariate logistic models. We evaluated the likelihood of sporadic, major gene, environmental, general, and six types of Mendelian models. Under each hypothesized model, we also estimated the susceptibility allele frequency, transmission probabilities for the susceptibility allele, baseline susceptibility and estimates of familial association. Comparisons between models were carried out using either maximum likelihood ratio test in the case of hierarchical models, or Akaike information criterion for non-nested models. When assessed against sporadic model without familial association, the model with both parent-offspring and sib-sib residual association could not be rejected. Likewise, the Mendelian dominant model that included familial residual association provided the best-fitting for the inheritance of ovarian cancer. The estimated disease allele frequency in the dominant model was 0.21.This report provides support for a genetic role in susceptibility to ovarian cancer with a major autosomal dominant component. This model does not preclude the possibility of polygenic inheritance of combined effects of multiple low penetrance susceptibility alleles segregating dominantly

    Genetic Background of Patients from a University Medical Center in Manhattan: Implications for Personalized Medicine

    Get PDF
    Background: The rapid progress currently being made in genomic science has created interest in potential clinical applications; however, formal translational research has been limited thus far. Studies of population genetics have demonstrated substantial variation in allele frequencies and haplotype structure at loci of medical relevance and the genetic background of patient cohorts may often be complex. Methods and Findings: To describe the heterogeneity in an unselected clinical sample we used the Affymetrix 6.0 gene array chip to genotype self-identified European Americans (N = 326), African Americans (N = 324) and Hispanics (N = 327) from the medical practice of Mount Sinai Medical Center in Manhattan, NY. Additional data from US minority groups and Brazil were used for external comparison. Substantial variation in ancestral origin was observed for both African Americans and Hispanics; data from the latter group overlapped with both Mexican Americans and Brazilians in the external data sets. A pooled analysis of the African Americans and Hispanics from NY demonstrated a broad continuum of ancestral origin making classification by race/ethnicity uninformative. Selected loci harboring variants associated with medical traits and drug response confirmed substantial within-and between-group heterogeneity. Conclusion: As a consequence of these complementary levels of heterogeneity group labels offered no guidance at the individual level. These findings demonstrate the complexity involved in clinical translation of the results from genome-wide association studies and suggest that in the genomic era conventional racial/ethnic labels are of little value.National Heart Lung and Blood Institute (NHLBI/NIH)[RO1 HL53353]Andrea and Charles Bronfman Philantropie

    The association of the vanin-1 N131S variant with blood pressure is mediated by endoplasmic reticulum-associated degradation and loss of function

    Get PDF
    High blood pressure (BP) is the most common cardiovascular risk factor worldwide and a major contributor to heart disease and stroke. We previously discovered a BP-associated missense SNP (single nucleotide polymorphism)-rs2272996-in the gene encoding vanin-1, a glycosylphosphatidylinositol (GPI)-anchored membrane pantetheinase. In the present study, we first replicated the association of rs2272996 and BP traits with a total sample size of nearly 30,000 individuals from the Continental Origins and Genetic Epidemiology Network (COGENT) of African Americans (P=0.01). This association was further validated using patient plasma samples; we observed that the N131S mutation is associated with significantly lower plasma vanin-1 protein levels. We observed that the N131S vanin-1 is subjected to rapid endoplasmic reticulum-associated degradation (ERAD) as the underlying mechanism for its reduction. Using HEK293 cells stably expressing vanin-1 variants, we showed that N131S vanin-1 was degraded significantly faster than wild type (WT) vanin-1. Consequently, there were only minimal quantities of variant vanin-1 present on the plasma membrane and greatly reduced pantetheinase activity. Application of MG-132, a proteasome inhibitor, resulted in accumulation of ubiquitinated variant protein. A further experiment demonstrated that atenolol and diltiazem, two current drugs for treating hypertension, reduce the vanin-1 protein level. Our study provides strong biological evidence for the association of the identified SNP with BP and suggests that vanin-1 misfolding and degradation are the underlying molecular mechanism

    Single-Trait and Multi-Trait Genome-Wide Association Analyses Identify Novel Loci for Blood Pressure in African-Ancestry Populations

    Get PDF
    Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P \u3c 1.25×10−8) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension

    Discovery and Fine-Mapping of Adiposity Loci Using High Density Imputation of Genome-Wide Association Studies in Individuals of African Ancestry: African Ancestry Anthropometry Genetics Consortium

    Get PDF
    Genome-wide association studies (GWAS) have identified \u3e 300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P \u3c 5×10−8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (\u3c5%). In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P \u3c 0.05 adjusted for effective number of variants per locus) from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations

    Adrenergic Alpha-1 Pathway Is Associated with Hypertension among Nigerians in a Pathway-focused Analysis

    Get PDF
    The pathway-focused association approach offers a hypothesis driven alternative to the agnostic genome-wide association study. Here we apply the pathway-focused approach to an association study of hypertension, systolic blood pressure (SBP), and diastolic blood pressure (DBP) in 1614 Nigerians with genome-wide data.Testing of 28 pathways with biological relevance to hypertension, selected a priori, containing a total of 101 unique genes and 4,349 unique single-nucleotide polymorphisms (SNPs) showed an association for the adrenergic alpha 1 (ADRA1) receptor pathway with hypertension (p<0.0009) and diastolic blood pressure (p<0.0007). Within the ADRA1 pathway, the genes PNMT (hypertension P(gene)<0.004, DBP P(gene)<0.004, and SBP P(gene)<0.009, and ADRA1B (hypertension P(gene)<0.005, DBP P(gene)<0.02, and SBP P(gene)<0.02) displayed the strongest associations. Neither ADRA1B nor PNMT could be the sole mediator of the observed pathway association as the ADRA1 pathway remained significant after removing ADRA1B, and other pathways involving PNMT did not reach pathway significance.We conclude that multiple variants in several genes in the ADRA1 pathway led to associations with hypertension and DBP. SNPs in ADRA1B and PNMT have not previously been linked to hypertension in a genome-wide association study, but both genes have shown associations with hypertension through linkage or model organism studies. The identification of moderately significant (10(-2)>p>10(-5)) SNPs offers a novel method for detecting the "missing heritability" of hypertension. These findings warrant further studies in similar and other populations to assess the generalizability of our results, and illustrate the potential of the pathway-focused approach to investigate genetic variation in hypertension

    The burden of obesity in women of reproductive age and in pregnancy in a middle-income setting:A population based study from Jamaica

    Get PDF
    Obesity is rising globally and is associated with increased risk of adverse pregnancy outcomes. This study aims to investigate overweight and obesity and its consequences among Jamaican women of reproductive age, particularly development of diabetes, hypertension and the risk of maternal death.A national lifestyle survey (2007/8) of 1371 women of reproductive age provided data on the prevalence of high BMI, associated risk factors and co-morbidities. A national maternal mortality surveillance database (1998-2012) of 798 maternal deaths was used to investigate maternal deaths in obese women. Chi-squared and Fisher exact tests were used.High BMI (> = 25kg/m2) occurred in 63% of women aged between 15 and 49 years. It was associated with increasing age, high gravidity and parity, and full time employment (p<0.001). Of those with high BMI, 5.5% were diabetic, 19.3% hypertensive and 2.8% were both diabetic and hypertensive. Obesity was recorded in 10.5% of maternal deaths, with higher proportions of deaths due to hypertension in pregnancy (27.5%), circulatory/ cardiovascular disorders (13.0%), and diabetes (4.3%) compared to 21.9%, 6.9% and 2.6% respectively in non-obese women.This is one of a few studies from a middle-income setting to explore maternal burden of obesity during pregnancy, which contributes to improving the knowledge base, identifying the gaps in information and increasing awareness of the growing problem of maternal overweight and obesity. While survey diagnostic conditions require cautious interpretation of findings, it is clear that obesity and related medical conditions present a substantial public health problem for emerging LMICs like Jamaica. There is an urgent need for global consensus on routine measures of the burden and risk factors associated with obesity and development of culturally appropriate interventions
    • …
    corecore