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RESEARCH ARTICLE
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Abstract

Hypertension is a leading cause of global disease, mortality, and disability. While individuals

of African descent suffer a disproportionate burden of hypertension and its complications,

they have been underrepresented in genetic studies. To identify novel susceptibility loci for

blood pressure and hypertension in people of African ancestry, we performed both single

and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide associ-

ation studies comprised of 31,968 individuals of African ancestry, and validated our results

with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine

loci with eleven independent variants which reached genome-wide significance (P <
1.25×10−8) for either systolic and diastolic blood pressure, hypertension, or for combined

traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and
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multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three

loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-

ancestry populations. Functional annotation showed enrichment for genes expressed in

immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven

by these findings and using angiotensin-II induced hypertension in mice showed altered kid-

ney mRNA expression of six genes, suggesting their potential role in hypertension. Our

study provides new evidence for genes related to hypertension susceptibility, and the need

to study African-ancestry populations in order to identify biologic factors contributing to

hypertension.

Author summary

Hypertension is a global health problem which affects disproportionally people of African

descent. We conducted a genome-wide association study of blood pressure in 31,968 Afri-

cans and African Americans to identify genes conferring susceptibility to increased blood

pressure. This research identified three novel genomic regions associated with blood pres-

sure which have not been previously reported in studies of other race/ethnicity. Using

experimental models, we also showed an altered expression of these genes in kidney tissue

in hypertension. These findings provide new evidence for genes influencing hypertension

risk and supports the need to study diverse ancestry populations in order to identify bio-

logic factors contributing to hypertension.

Introduction

Genetic studies hold the promise of providing tools to better understand and treat clinical con-

ditions. To achieve the clinical and public health goals of reducing hypertension and its

sequelae, and to understand ethnic disparities in the risk for hypertension, there is a need to

study susceptible populations for genetic determinants of blood pressure (BP). BP traits are

highly heritable across world populations (30 to 55%).[1–4] Over 200 genetic loci have been

identified in genome-wide association studies [5–13] and admixture mapping studies.[14–17]

These variants explain approximately 3.5% of inter-individual variation in BP.[5, 7] However,

there is still a paucity of studies focused on individuals of African descent. Most of the loci

identified in the literature have not been replicated in individuals of African ancestry.[18, 19]

African Americans have higher mean BP, an earlier onset of hypertension, and a greater

likelihood to have treatment-resistant hypertension than other ethnic groups.[20–23] Emerg-

ing research on Africans shows increasing prevalence of hypertension in urban African com-

munities [24, 25] which are more Westernized than rural African communities and, so, more

closely resemble communities in which African Americans live in the U.S. Hypertension con-

tributes to a greater risk of coronary heart disease, stroke, and chronic kidney disease.[26–30]

African Americans experience increased risk of these hypertension-related outcomes [31–34]

but the underlying mechanisms, whether environmental exposures or increased genetic sus-

ceptibility, are unknown.

We hypothesized that additional variants associated with BP can be identified in people of

African ancestry; some variants may be African-specific, as has been observed for multiple

traits, including kidney disease [35] and metabolic syndrome.[36, 37] Other variants may be

identified in novel loci based on a higher frequency of risk alleles in this population. We used

Genetics of blood pressure in African populations
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high density imputed genotypes from the 1000 Genomes Project (1000G) to expand the

genome coverage of genetic variants so that we could examine the evidence for association

with BP traits.

Here, we report three novel loci associated with BP which are driven by variants that are

common in or unique to African-ancestry populations. Through bioinformatics and experi-

mental evidence of kidney gene expression in mice submitted to angiotensin-II (Ang II)

induced hypertension, we provide evidence for a key role of these genes in the pathogenesis of

hypertension. In addition, our study extends the discovery of BP loci to genes related to kidney

and the immune systems, and provides biological relevance for these loci to BP regulation.

Results

The study design and analysis process are shown in Fig 1. Study characteristics, genotyping,

and quality control (QC) for discovery and replication samples are shown in S1 and S2 Tables.

The discovery samples included 31,968 individuals of African ancestry from 19 studies. The

replication samples included 4,184 individuals of African ancestry from three studies, 23,914

individuals of European ancestry from five studies, 14,016 individuals of Korean ancestry from

three studies, and 12,278 individuals of Hispanic/Latino ancestry from one study.

Fig 1. Study design schematic for discovery and replication of loci. QC, quality control; SBP, systolic blood pressure; DBP, diastolic blood

pressure; PP, pulse pressure; HTN, hypertension; eQTL, expression quantitative loci.

https://doi.org/10.1371/journal.pgen.1006728.g001
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Single-trait and multi-trait meta-analysis genome-wide association study

(GWAS) results

Study-specific genomic-control inflation ranged from 0.98–1.06 (S3 Table, S1 Fig) and the

linkage disequilibrium (LD) score regression intercepts of the single-trait BP meta-analyses

calculated by the LD score regression approach ranged from 1.02–1.04. [38] These results sug-

gest well-controlled population stratification.

The single-trait BP meta-analyses identified several genome-wide significant single nucleo-

tide polymorphisms (SNP) at eight loci (P< 5.0×10−8, systolic BP (SBP): three loci, four SNPs;

diastolic BP (DBP): three loci, three SNPs; pulse pressure (PP): three loci, four SNPs; and

hypertension (HTN): one locus, one SNP), with the EVX1/HOXA locus identified for SBP,

DBP and HTN (S2A–S2D Fig). When combining summary statistics for SBP, DBP, and HTN

using the multi-trait approach CPASSOC,[39] we identified one locus by the multi-trait statis-

tic SHom (EVX1/HOXA) and six loci by SHet (ULK4, TCF21, EVX1/HOXA, IGFBP3, CDH17,

ZNF746) at P< 5×10−8 (S2E and S2F Fig). Note some loci overlap between single-trait and

multi-trait findings.

We observed 264 variants with P < 1×10−6 for either single- or multi- trait GWAS and

these variants were further analyzed by conditional association on the most associated SNPs at

each locus (S4 Table). These analyses resulted in 72 independent associations, which included

58 SNPs with minor allele frequency (MAF)� 0.05 and 14 with low frequency variants (0.01<

MAF < 0.05) (S5 Table).

Trans-ethnic replication

Among these 72 variants carried forward for trans-ethnic replication, nine variants, all low fre-

quency variants (MAF<0.02), were not available in replication cohorts because they were

either monomorphic in the replication population or had a low imputation quality, reducing

our replication effort to 63 variants (S6 Table). Eleven independent variants at nine loci were

significantly associated with BP traits at P < 1.25×10−8 in the combined discovery and replica-

tion analyses and are reported in Table 1. This significance level was determined by adjusting

for two independent traits for SBP, DBP, PP and HTN, and two tests of multiple trait analysis.

This includes six variants that reached significance level at discovery stage (P<5 x10-8). Two

loci were identified only through multi-trait analyses (FRMD3, IGFBP3). Three of these nine

loci are novel: TARID /TCF21, FRMD3, and LLPH/TMBIM4 (Fig 2A–2C). Four loci (ULK4,

PLEKHG1, EVX1/HOXA cluster, and GPR20) have been reported in our previous BP GWAS

of African ancestry (S3 Fig),[7, 18] and two loci (IGFBP3, CDH17) have been reported in mul-

tiple-trait analyses of African-ancestry studies (Fig 2D–2F).[39] A composite genetic-risk

score using the eleven variants identified accounted for 1.89%, 2.92%, 1.03% and 1.08% of the

variance for SBP, DBP, PP and HTN respectively.

Newly identified loci harbor variants common only in African-ancestry

populations

Five of the eleven replicated variants are common in individuals of African ancestry but rare or

monomorphic in individuals of non-African ancestry (rs76987554, rs115795127, rs113866309,

rs7006531, and rs78192203)(Table 1). These five variants were 1) either low frequency or com-

mon variants in COGENT-BP African-ancestry samples; 2) low frequency in 1000G Phase I Inte-

grated Release Ad Mixed-American ancestry (AMR); and 3) monomorphic in 1000G Asian

ancestry (ASN) or European ancestry (EUR). One common variant was present in only 1000G

samples of African ancestry (rs115795127 at FRMD3, Table 1). These variants were located at the
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three novel loci (TARID/TCF21, FRMD3, and LLPH/TMBIM4). Given the differences in allele

frequency across continental-ancestry populations, we examined the evidence for selection at

each of these loci using iHS, which measures the amount of extended haplotype homozygosity

at a given SNP along the ancestral allele relative to the derived allele.[40] The iHS score for

Table 1. Loci identified in combined COGENT-BP African ancestry discovery samples and multi-ethnic replication samples.

SNP Effect

Allele/

Other

Allele

Chr Nearby

Gene COGENT-BP

Allele

Frequency

1000G Phase 1 Allele

Frequency

Single or

Multi-Trait

(CPASSOC)

Statistic

COGENT-BP

Discovery (Up to

N = 31,155)

Trans-Ethnic

Replication

(Up to

N = 54,245)

Combined

Meta-

analyses

(Up to

N = 85,397)

AFR AMR ASN EUR Beta

(SE)

P P P

SNPs in novel loci

rs76987554 C/T 6 TARID/

TCF21

0.91 0.91 0.99 1 1 SBP 1.85

(0.31)

2.2x10-9 2.0x10-2 2.3x10-10

rs115795127 T/C 9 FRMD3 0.89 0.86 1 1 1 CPASSOC

SHet

NA 1.1x10-6 8.4x10-6 7.3x10-9

rs113866309 C/T 12 LLPH/

TMBIM4

0.02 0.02 0.01 0.00 0.00 PP 3.28

(0.63)

1.7x10-7 1.5x10-3 8.2x10-9

SNPs in published BP loci

rs7651190 G/A 3 ULK4 0.65 0.72 0.17 0.15 0.19 DBP 0.45

(0.11)

4.2x10-5 1.0x10-5 2.0x10-9

CPASSOC

SHet

NA 6.9x10-9 2.0x10-4 9.8x10-11

rs7372217 G/A 3 ULK4 0.66 0.71 0.20 0.16 0.20 DBP 0.55

(0.11)

9.5x10-7 8.1x10-7 5.3x10-12

CPASSOC

SHet

NA 8.2x10-6 6.5x10-8 1.4x10-11

rs62434120 T/A 6 PLEKHG1 0.85 0.83 0.82 0.95 0.92 SBP 1.19

(0.24)

1.1x10-6 2.7x10-3 5.7x10-9

rs11563582 A/G 7 EVX1/

HOXA

cluster

SBP 1.61

(0.28)

7.1x10-9 4.2x10-4 4.5x10-10

0.13 0.16 0.09 0.05 0.08 DBP 1.02

(0.17)

8.4x10-10 1.4x10-4 1.7x10-11

CPASSOC

SHom

NA 1.5x10-10 8.0x10-4 1.9x10-11

CPASSOC

SHet

NA 1.1x10-9 9.4x10-3 1.8x10-9

rs6969780 C/G 7 HOXA SBP 0.82

(0.19)

1.7x10-5 6.5x10-5 6.2x10-9

0.30 0.35 0.21 0.13 0.10 DBP 0.62

(0.12)

7.0x10-8 2.1x10-4 3.3x10-10

CPASSOC

SHom

NA 4.1x10-7 4.0x10-4 9.9x10-9

rs11977526 A/G 7 IGFBP3 0.34 0.34 0.31 0.78 0.41 CPASSOC

SHet

NA 4.5x10-9 2.9x10-9 7.3x10-16

rs7006531 G/A 8 CDH17 0.15 0.19 0.02 0.00 0.00 PP 1.16

(0.17)

5.0x10-12 9.7x10-2 5.9x10-12

CPASSOC

SHet

NA 7.6x10-14 6.1x10-3 2.2x10-13

rs78192203 T/A 8 GPR20 0.80 0.79 0.98 1 1 DBP 0.77

(0.14)

1.3x10-8 2.7x10-4 4.1x10-11

Bold P-values represent either significance level at 5.0x10-8 in discovery sample or at 1.25x10-8 at combined discovery and replication samples. 1000G

samples: AFR, African ancestry; AMR, American ancestry; ASN, Asian ancestry; EUR, European ancestry

https://doi.org/10.1371/journal.pgen.1006728.t001
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Fig 2. Regional plots of the significant loci A. TARID/TCF21 for SBP B. FRMD3 for SHet of CPASSOC C. LLPH locus for PP

D. CDH17 for PP E. CDH17 for SHet of CPASSOC F. IGFBP3 for SHet of CPASSOC. The y axis shows the −log10 P values

of SNP associations, and the x axis shows their chromosomal positions. The lowest P value SNP is plotted as a purple
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rs115795127 was 2.7 in African American samples from the Candidate-gene Association Re-

source (CARe) consortium (see Methods), suggesting selection at the FRMD3 locus (S7 Table).

Distinct associations at EVX1/HOXA, ULK4, and GPR20 in African-

ancestry populations

We observed two independent genome-wide significant variants at the EVX1/HOXA locus

(P< 1.25×10−8). The two variants, rs11563582 and rs6969780, are in weak LD (r2 = 0.21)

(S3A–S3C Fig), and the LD pattern suggests that these SNPs are located in two blocks (S4 Fig).

SNP rs11563582 is in strong LD with the previously reported SNP in the region (rs17428741).

[18] SNP rs6969780 remained significant when conditioning on rs11563582 (S4 Table), thus

demonstrating the presence of allelic heterogeneity at this locus. Two independent variants at

ULK4 reached the significance threshold: rs7651190 and rs7372217 (LD r2 = 0.15) (S4E Fig).

SNP rs7372217 is in strong LD with the previous reported SNP rs1717027.[18] The association

evidence of rs1717027 can be explained by rs7372217 but not by rs7651190 in conditional

analysis (S4 Table). Thus, rs7651190 is an independent association at this locus. At the GPR20
locus, our most significant SNP, rs78192203, is 8kb away and it is not in LD with the published

SNP, rs34591516 (r2 = 0.008, D’ = 0.68 in African American CARe participants).

Pathway analyses suggest enrichment of immune pathways for BP

traits

To gain insight into biologic mechanisms underlying genes associated with BP traits, we per-

formed pathway analysis using publicly available databases. [41] The most relevant pathways

identified were GSK3, Th1/Th2 differentiation, and Sonic Hedgehog (SHH) pathways (BIO-

CARTA): pyrimidine metabolism, apoptosis signaling pathway, and B cell activation (Pan-

ther); JAK Stat signaling, T cell receptor signaling, and B cell receptor signaling (Ingenuity);

cytokine-cytokine receptor interaction and vascular smooth muscle contraction (KEGG); and

neuronal activity, T cell mediated immunity, and tumor suppressor (Panther Biological Pro-

cess) (Gene Set Enrichment Analysis [GSEA] P-value < 0.01, S8 Table). These analyses suggest

enrichment of immune pathways for BP traits.

Tissue and cell type group enrichment analyses identify immune, kidney,

and cardiovascular enriched systems

We performed functional annotation and cell type group enrichment analysis using the strati-

fied LD score regression approach which uses data from ENCODE and the Roadmap Epige-

netic Project, as well as GWAS results while accounting for the correlation among markers.

[42] We estimated functional categories of enrichment using an enrichment score, which is

the proportion of SNP-heritability in the category divided by the proportion of SNPs. We

identified super enhancer (PEnrich = 5.4×10−5
, Enrichment = 5.6 for DBP), enhancer (PEnrich =

4.8 ×10−4, Enrichment = 4.3 for HTN), and H3K27ac (PEnrich = 3.2×10−4, Enrichment = 3.6 for

HTN) significant enrichment (Fig 3). These results support a role of identified noncoding reg-

ulatory regions in BP regulation. In addition, the following cell types showed significant

enrichment (P� 2.5 × 10−3): the immune (PEnrich = 1.4×10−9, Enrichment = 8.4 for DBP), kid-

ney (PEnrich = 5.4×10−5, Enrichment = 4.8 for DBP), and cardiovascular (PEnrich = 8.9×10−5,

Enrichment = 4.2 for SBP) systems (Fig 3).

diamond and its correlation with other SNPs in the region is shown in color. The orange triangle is P value in the combined

discovery and replication trans-ethnic meta-analysis of the lowest P value SNP.

https://doi.org/10.1371/journal.pgen.1006728.g002
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We next determined the enrichment of variants at the eleven genome-wide significant loci

for DNase l hypersensitive (DHS) sites in 34 tissue categories from ENCODE. At each locus,

we identified variants in r2>0.1 with the index variant and calculated causal evidence (Bayes

Factors) for each variant. We then tested for enrichment in the causal evidence of variants in

DHS sites using fGWAS.[43] We found enrichment of blood/immune DHS (Enrichment = 3.1)

and cardiovascular DHS (blood vessel Enrichment = 28.7, heart Enrichment = 2.0), in addition

to DHS in several fetal tissues (S5 Fig). Candidate causal variants at several loci overlapped

enriched DHS sites. For example, at the LLPH/TMBIM4 locus, the most likely causal variant,

rs12426813, overlaps a DHS site active in immune (CD14+, CD4+, CD34+), blood vessel

(HMVEC), and heart (HCF) cells (S5 Fig).

Overlap with eQTL at specific tissues

To examine whether the eleven significant SNPs are eQTL, we searched the genotype-tissue

expression (GTEx) pilot database, which includes non-disease human tissue.[42] Among the

eleven SNPs, three SNPs have been identified as eQTL: rs6969780 (HOXA2), rs7651190

Fig 3. Enrichment for functional annotations and cell-type groups using stratified LD score regression. A. Enrichment estimates of

24 main annotations for each of four BP traits. Annotations are ordered by size. Error bars represent jackknife standard errors around the

estimates of enrichment, and stars indicate significance at P < 0.05 after Bonferroni correction for 24 hypotheses tested and four BP traits.

B. Significance of enrichment of 10 cell-type groups for four BP traits. Dotted line and stars indicate significance at P < 0.05 after Bonferroni

correction for 10 hypotheses tested and four BP traits.

https://doi.org/10.1371/journal.pgen.1006728.g003
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(ULK4), and rs62434120 (PLEKHG1) (S9 Table). SNP rs6969780 is an eQTL for expression of

HOXA2, HOXA7, HOTAIRM1, and HOXA5 in multiple tissues, including esophagus, artery,

lung, skin, nerve, adipose, skeletal muscle, and stomach tissues. SNP rs7651190 is an eQTL for

ULK4 and RPL36P20 in artery, whole blood, thyroid, nerve, esophagus, skeletal muscle, skin,

brain, and stomach cells/tissues. SNP rs62434120 is an eQTL for PLEKHG1 in testis tissue.

Kidney gene expression in experimental angiogensin II-induced

hypertension

To determine if identified genes are functionally involved in BP regulation in the kidney dur-

ing hypertension,[44] we quantified gene expression in mice kidneys at baseline and during

the hypertensive state induced by Ang II. This hypertensive model was chosen for two reasons:

1) to mimic the low plasma renin state, albeit more exaggerated than the level observed, in

African-ancestry individuals that has been suggested to reflect the elevated renin-angiotensin

system activity at the tissue level in the kidney [45], and 2) maintenance of hypertension in the

Ang II model requires activation of the immune system that is implicated in several identified

loci.[46, 47] Kidney gene expressions of the identified genes were compared to age-matched

untreated mice after two weeks of Ang II infusion, which increases SBP. For the HOXA locus,

we examined the expression of genes that are known to be expressed in the mouse kidney:

Hoxa1 (2 isoforms), 5, 7, 9, 10 (2 isoforms), and 11. Among all the genes examined, Tmbim4
was the most abundantly expressed gene in the kidney at baseline. Six genes—Hoxa5, Hoxa10-
1 isoform, Hoxa11, Tmbim4, Igfbp3, and Plekhg1—were significantly differentially expressed

in the kidney after Ang II treatment compared to baseline (Fig 4). Except for Hoxa5, which

showed a significant decrease (Fig 4A), the expression of all these genes increased after the

intervention. The expression of six genes—Hoxa1-1 isoform, Hoxa7, Hoxa9, Hoxa10-2 iso-

form, Llph, and Ulk4—were unchanged after Ang II infusion (Fig 4B). The following genes

were not expressed in the adult mouse kidney at baseline or after Ang II intervention: Frmd3-1
isoform, Frmd3-2 isoform, Grp20, Tcf21, Cdh17, and Hoxa1-2 isoform.

Discussion

To date, this is the largest genome-wide analysis of African-ancestry populations to study

genetic variants underlying BP traits using dense-coverage imputed genotypes. Our main find-

ings are eleven independent variants at nine loci, significantly associated with BP traits, includ-

ing three newly identified loci (TARID/TCF21, FRMD3, LLPH/TMBIM4). We also found

evidence for additional independent SNP associations in fine-mapping of three previously

described loci, ULK4, EVX1/HOXA, and GRP20.[18, 39]

The most significant variants at TARID/TCF21, FRMD3, GPR20, and CDH17 are common

variants in COGENT-BP African-ancestry participants, but monomorphic or low frequency

in non-African-ancestry populations. For example, rs115795127 at FRMD3 is rare in European

populations (MAF = 0.0007) and absent in East Asian and Hispanic/Latino populations. There-

fore, they could not be identified in GWAS of non-African-ancestry populations even when

increasing sample sizes. We also show evidence for selection for the variant at FRMD3, although

additional studies should confirm these findings. The African-specific variants were not well

tagged by HAPMAP2 data and therefore were not detected in our previous African-ancestry

GWAS.[18] Overall, our results suggest additional gain in discovery when using dense imputed

genotypes and support a role of population-specific alleles in African and African-admixed pop-

ulations contributing to BP regulation and hypertension. Furthermore, they support the ratio-

nale and the need to study diverse populations in order to more effectively characterize the

genetic architecture of BP in populations and the ethnic disparities in hypertension.
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Functional annotation of our lead variants showed co-localization with annotated elements,

including super enhancer, enhancer, and H3K27ac chromatic mapping in immune cells

and kidney tissues, which has not been previously reported, in addition to cardiovascular tis-

sues. There was also evidence for regulatory function in these relevant tissues through gene

Fig 4. Relative renal mRNA levels of genes identified at baseline and after 2 weeks of Ang II-induced hypertension. HPRT gene was used for

normalization. N� 5 in each group. A. Genes that were differentially expressed between baseline and Ang II conditions. B. Genes that were not

altered between the two conditions. * P < 0.05. ** P < 0.01. *** P < 0.001.

https://doi.org/10.1371/journal.pgen.1006728.g004
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expression regulation (eQTL) and through overlaps with DHS in relevant tissues/cells. This

evidence was additionally supported by experimental findings of differential expression of six

genes (Hoxa5, Hoxa10-1 isoform, Hoxa11, Tmbim4, Igfbp3, and Plekhg1) in the mouse kidney

after HTN induced by Ang II treatment. Overall, our results suggest the functional importance

of identified genes in regulating BP in both normal and hypertension states.

At the newly identified loci, SNP rs76987554 is an intronic variant in TARID (TCF21 anti-

sense RNA inducing promoter demethylation) which has not been previously reported to be

associated with BP traits. A nearby gene, TCF21 (transcription factor 21), is a transcription fac-

tor of the basic helix-loop-helix family, which is mainly expressed in the liver, kidney, and

heart. TCF21 is involved in epithelial differentiation and branching morphogenesis in kidney

development,[48] and was associated with hypertension in a study of individuals of Japanese

ancestry.[49] At the chromosome 7, rs115795127 is an intronic variant to FRMD3 (FERM

domain containing 3) which encodes a protein involved in maintaining cell shape and integ-

rity. FRMD3 has been associated with type 1 and type 2 diabetic kidney diseases in different

ethnic populations, including those of European, African, and Asian ancestries.[50] The diabe-

tes variant, rs10868025, is not in LD with rs115795127 in our African American samples or in

1000G EUR samples (r2 = 0.00028 and 0.0018, respectively), thus representing an independent

association at this locus.

At chromosome 9, the functions of LLPH and TMBIM4 genes in BP regulation are cur-

rently unknown. LLPH belongs to the learning-associated protein family and is highly ex-

pressed in the immune system and the adrenal gland. TMBIM4 encodes the transmembrane

BAX inhibitor motif-containing protein 4 and is highly expressed in whole blood, the immune

system, and the adrenal gland.[51] The most significant variant at this locus, rs113866309,

overlaps a DHS in immune, blood vessel, and heart cells. In our experimental model in mice,

Tmbim4 gene expression was significantly increased after Ang II-induced HTN. This gene has

been shown to inhibit apoptosis[52] and to decrease the efficacy of inositol 1,4,5-triphosphate

(IP3)-dependent release of intracellular Ca2+. [53] This raises the possibility that the TMBIM4

protein may serve to dampen the effect of Ang II, which activates IP3 in vascular smooth mus-

cle cells through the stimulation of the angiotensin type 1 receptor.[51, 53, 54] Therefore, it is

possible that in conditions of activated renin-angiotensin system, genetic variants that lower

the expression of TMBIM4 may augment BP, whereas genetic variants that increase its expres-

sion may attenuate BP.

Other genes, such as Hoxa5, Hoxa10-1, Hoxa11, Igfbp3, and Plekhg1, were significantly dif-

ferentially expressed after Ang II-induced HTN in our mice experimental models. The HOXA-

cluster has been identified in our previous GWAS of BP in African ancestry and in a recent

GWAS of BP in European ancestry[5] though the underlying mechanisms related to BP con-

trol are unknown. We identified two independent variants at this locus; further studies are

needed to delineate which of the HOXA genes are most likely involved in the association. In

our experimental mice model, the Hoxa10-1 isoform had a greater than 20-fold increase in

kidney expression during Ang II-induced HTN compared to baseline levels. However, it

remains to be determined whether it is an effect of Ang II in hypertension, or a compensatory

response to hypertension. Future studies using genetic manipulation in rodents are required

to determine whether these changes are specific response related to BP and Ang II or simply a

generic response to stress.

We identified several additional pathways involved in BP traits, including the GSK3 path-

way, which has been reported to influence Wnt-mediated central BP regulation.[55] The Th1/

Th2 pathway is involved in the regulation of immune responses[56] and has been linked to

hypertension and atherosclerosis.[57, 58] The role of the immune system in the development

of hypertension has been suggested in clinical studies and experimental animal models.[59–
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64] This includes reports of overlap of genetic variant associations between BP traits and

immune-disorders [65] and evidence of enrichment of immune pathways from GWAS of BP.

[66] Mutations of SH2B3, a gene identified in a GWAS of hypertension, have been recently

shown to attenuate Dahl salt-sensitivity hypertension through inflammatory modulation.[67]

In addition, the actions of Ang II in the pathophysiology and maintenance of hypertension are

in part mediated through the activation of the immune system.[46]

Our assessment of the clinical implications of identified variants is limited by available data

on African-ancestry populations. For example, there are currently no large publicly available

GWAS of coronary heart disease or stroke outcomes in African-ancestry populations. It

should also be noted that most of our replication cohorts were from populations other than

those of African ancestry. Therefore, the power of replication analysis could still be low, which

explains why only 11 of 63 variants were successfully replicated.

In summary, we report 11 independent variants at nine loci that are potential regulators of

BP in our African-ancestry population study. Three loci are new. Identified BP variants are

enriched in immune, kidney, heart, and vascular system pathways. Our experimental findings

suggest that several of these genes may be involved in the renin-angiotensin pathways in the

kidney during hypertension. Further population studies and experimental models are required

for a comprehensive assessment of the identified genes across the immune, kidney, and cardio-

vascular systems. Our study demonstrates the need to further study individuals of African

ancestry in order to identify loci and new biological pathways for BP.

Methods

Samples and BP phenotypes

Each study followed protocols for phenotype harmonization. For individuals taking anti-

hypertensive medications, we added 15 and 10 mm Hg to measured SBP and DBP, respec-

tively, a standard method used in other BP GWAS.[6, 68] PP was calculated as the difference

between SBP and DBP after addition of the constant values. HTN was defined by a SBP� 140

mm Hg, a DBP� 90 mm Hg, or use of antihypertensive drugs.[69]

Genotyping and imputation

Each cohort was genotyped on either Affymetrix or Illumina genotyping platforms. Pre-impu-

tation quality criteria were applied as described in S2 Table, and included exclusion of individ-

uals with discordant self-reported gender and genetic gender. Imputation was performed

using the software MACH-ADMIX, MACH-minimac or IMPUTE2 [70–72] using the Phase 1

integrated (March 2012 release) multi-ethnic reference panel from the 1000G Consortium

(http://www.internationalgenome.org/).[73]

Association analysis

Autosomal chromosome SNP associations for SBP, DBP, and PP were assessed by linear

regression for unrelated data or by the generalized linear mixed-effects model for family data,

under the assumption of an additive genetic model. All models were adjusted for age, age2, sex,

and body mass index. Up to ten principal components were included, as needed as covariates

in the regression models, to control population stratification.[74, 75] We used standardized

pre-meta-analysis QC criteria for all 21 discovery studies.[76] At the SNP level, we excluded

variants with 1) imputation quality r2 < 0.3 in MACH or <0.4 in IMPUTE2; 2) the number of

informative individuals (2×MAF×N×r2)� 30; 3) an effect allele frequency (EAF) difference

larger than 0.3 in comparison with the mixture of 80% YRI and 20% CEU of 1000G; and 4) the
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absolute regression coefficient� 10. SNPs that passed the QC were carried forward for inverse

variance weighted meta-analyses, implemented in METAL.[77]

Multi-trait statistical analyses using CPASSOC

We applied the CPASSOC software to combine association evidence of SBP, DBP, and HTN.

CPASSOC provides two statistics, SHom and SHet, as previously described.[39] SHom is similar to

the fixed effect meta-analysis method[77] but accounts for the correlation of summary statis-

tics of the multi-traits and for overlapping or related samples among the cohorts. SHom uses the

trait sample size as the weight, so that it is possible to combine traits with different measure-

ment scales. SHet is an extension of SHom, and it can increase the statistical power over SHom

when a variant affects only a subset of traits. The distribution of SHet under the null hypothesis

was obtained through an estimated beta distribution. To calculate the statistics, SHom and SHet,
and to account for the correlation among the traits, a correlation matrix is required. In this

study, we used the correlation matrix calculated from the residuals of the three BP traits after

adjustments for covariates and principal components.

Replication and meta-analyses

All independent SNPs identified with P< 10−6 (threshold chosen for suggestive association)

in the discovery stage were carried forward for replication in African-ancestry individuals and

in multi-ethnic samples of European Americans, East Asians, or Hispanics/Latinos (Fig 1). For

single-trait analyses, we conducted fixed effect meta-analyses in the replication sets for each of

four BP traits (SBP, DBP, PP and HTN), followed by a combined trans-ethnic meta-analysis of

each trait. This was followed by a mega-meta-analyses, combining the results of discovery and

replication for single traits using fixed-effects meta-analysis. We also performed a multi-trait

CPASSOC analysis of SBP, DBP, and HTN in each replication study. Because CPASSOC only

generated test statistics SHom/SHet and corresponding P values without effect sizes, we com-

bined the association P values from all four replication populations using Fisher’s method

(http://hal.case.edu/zhu-web/). Finally, we combined the CPASSOC meta-analysis results

from the discovery and replication stages using Fisher’s method.

Multiple-testing thresholds

For a single trait GWAS discovery analysis, we used genome-wide significant level P =

5.0×10−8. We performed six different analyses, four single trait (SBP, DBP, PP and HTN)

analyses and two CPASSOC (SHom and SHet) analyses for each SNP. For the four single corre-

lated traits (SBP, DBP, PP and HTN), we calculated the number of independent traits using

the eigenvalues of the correlation matrix, [78] which resulted two independent traits. There-

fore, we counted four independent analyses, which were two independent single traits and two

statistics of CPASSOC analyses, and applied an experimental significance level P = 1.25×10−8

for claiming a genome-wide significance when combining discovery and replication samples.

We should point out that the two CPASSOC test statistics and a single trait statistic are not

independent. Thus, the significance level P = 1.25×10−8 is conservative.

Conditional analysis

Since a locus may consist of multiple independent signals, we applied approximate conditional

analysis implemented in GCTA-COJO[79, 80] using the summary statistics of SNPs with

P< 1.0×10−6 from both of the individual trait meta-analyses (http://cnsgenomics.com/
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software/gcta/cojo.html). The LD among variants was estimated from the five African Ameri-

can cohorts from the CARe consortium.[79]

Pathway analysis

Pathway analysis was performed using the Meta-Analysis Gene-set Enrichment of variant

Associations (MAGENTA) program (http://www.broadinstitute.org/mpg/magenta/).[41]

Using the summary statistics from the four BP traits and two statistics from CPASSOC, from

the discovery stage, we tested whether sets of functionally-related genes are enriched for asso-

ciations. This method first converts the P values of SNPs into gene scores with correcting for

confounders, such as gene site, number of variants in a gene, and their LD patterns, and then

calculated a gene set enrichment P value for each biological pathway or gene set of interest

using a non-parametric statistical test. The nominal GSEA P value refers to the nominal gene

set enrichment P value for a gene set. The database of pathway/gene-sets to be tested include

Ingenuity (June 2008), KEGG (2010), GO, and the Panther, signaling pathways downloaded

from MSigDB and PANTHER (http://www.broad.mit.edu/gsea/msigdb/collections.jsp; http://

www.pantherdb.org/).[81] We applied the parameters suggested by the authors, which

includes the 75th percentile cut off of gene scores, the nominal GSEA P-value < 0.01 and the

false discovery rate (FDR) < 0.3.

Functional annotation enrichment analysis

The enrichment of heritability of genomic regions to different functional categories, including

cell type-specific elements, was evaluated using the method of LD score regression (https://

github.com/bulik/ldsc).[42, 82] This method partitioned the heritability from the discovery

GWAS summary statistics of four BP traits (SBP, DBP, PP, and HTN) while accounting for LD

among markers.[42] We calculated enrichment, in functional regions and in expanded regions

(+500bp) around each functional class, based on functional annotation, using a “full baseline

model” previously created from 24 publicly available main annotations that are not specific to

any cell type.[42] Enrichment was calculated based on the ratio of explained heritability and

the proportion of SNPs in each annotation category. The standard error of enrichment was

estimated with a block jackknife to calculate z scores and P values.[42] The multiple testing

threshold was determined using the Bonferroni correction while accounting for two indepen-

dent-trait analyses based on Ji and Li’s method[78] (P of 0.05/[25 classes × 2 traits]). We also

performed cell-type-specific group enrichment analysis using cell-type-specific annotations

from four histone marks (H3K4me1, H3K4me3, H3K9ac, and H3K27ac), which corresponded

to 220 cell types. We divided the 220 cell-type-specific annotations into 10 groups: adrenal/

pancreas, central nervous system (CNS), cardiovascular, connective/bone, gastrointestinal,

immune/hematopoietic, kidney, liver, skeletal muscle and other. The analysis characterized

cell-type-specific annotations within each group and calculated the enrichment of heritability

for each group.[42]

Genomic annotation enrichment

We selected sets of variants in LD r2 > 0.1 from the eleven replicated variants, and calculated

Bayes Factors and posterior causal probabilities for each variant from the effect sizes and stan-

dard errors, as previously described.[83] Each distinct variant associated with multiple traits

was included in the analysis only once. The genomic annotations of DHS sites for 348 cell

types from the ENCODE project were obtained and grouped into cell types associated with 34

tissues (http://genome.ucsc.edu/ENCODE/cellTypes.html). Four gene-based annotations—

coding exon, 5-UTR, 3-UTR, and 1kb upstream of transcription start site (TSS)—from
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GENCODE transcripts were also obtained. Variants overlapping each of these annotations

were then identified. Using the variant annotations and fGWAS (https://github.com/

joepickrell/fgwas), we tested for enrichment of variants across all signals in 38 DHS categories,

including in the four gene-based annotations in each model.[43]

Expression quantitative trait loci (eQTL) analysis

We used the GTEx pilot database [82] (http://www.gtexportal.org/home/) to identify eQTLs in

the successfully replicated SNPs.

Integrated haplotype score (iHS) analysis

To evaluate population differentiation and natural selection, using Haplotter,[40] we calcu-

lated the integrated haplotype score (iHS) in five cohorts of CARe so that we could measure

the amount of extended haplotype homozygosity (http://coruscant.itmat.upenn.edu/whamm/

ihs.html). Hence, we tested the evidence of recent positive selection at five significant SNPs

with differences in allele frequency across continental-ancestry populations. The measures

were standardized (mean 0, variance 1) empirically to the distribution of observed iHS scores

over a range of SNPs with similar derived allele frequencies. This method assesses the evidence

for selection by comparing the extended homozygosity for haplotypes on a high frequency

derived allele relative to the ancestry background.[40]

Experimental mouse models

Experiments were carried out in accordance with local and the National Institutes of Health

guidelines. The animal protocol was approved by the University of Virginia Institutional Ani-

mal Care and Use Committee. Wild-type male mice on the 129S6 background at ~ 3 months

of age were used for gene expression analyses. All mice were maintained on a 12-hour light-

dark cycle with free access to standard chow and water in the animal facility of the University

of Virginia.

The hypertension experimental model was induced using Ang II (Sigma-Aldrich, St. Luis,

MO) delivered at 600 ng/kg/min for 2 weeks via Alzet mini-osmotic pumps (Durect Corpora-

tion, Cupertino, CA, model 2004), as previously described.[84] For gene expression analyses,

RNA from kidney tissue was isolated by RNeasy Mini kit (Qiagen) and transcribed to cDNA

by iScript TM cDNA synthesis kit (Bio-Rad). Real time PCR analyses were performed on

iQTM5 Multicolor real time PCR Bio-Rad instruments using iQTM SYBER1 Green Supermix.

Hprt was used as a reference gene for normalization. Sequences of forward and reversed prim-

ers (FP and RP) for the gene expression studies are shown in S10 Table.

Ethic statement. All research involving human participants have been approved by the

Institutional Review Board (IRB) # 04-95-72 and study-related Publication and Presentation

committees. All participants have provided informed consent for DNA research and data are

publicly available in dbGap.

Animal experiments were carried out following the guidelines established locally at the Uni-

versity of Virginia (UVA) and by the National Institutes of Health. The animal protocol was

approved by the UVA Institutional Animal Care and Use Committee (Protocol # 3791, Proto-

col Title: Genes regulating Hypertension and Kidney Disease). Wild-type male mice on the

129S6 background at ~ 3 months of age were used for gene expression analyses. All mice were

maintained on a 12-hour light-dark cycle with free access to standard chow and water in the

animal facility UVA.
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