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Abstract

Background: When many (up to millions) of statistical tests are conducted in discovery set analyses such as
genome-wide association studies (GWAS), approaches controlling family-wise error rate (FWER) or false discovery
rate (FDR) are required to reduce the number of false positive decisions. Some methods were specifically
developed in the context of high-dimensional settings and partially rely on the estimation of the proportion of true
null hypotheses. However, these approaches are also applied in low-dimensional settings such as replication set
analyses that might be restricted to a small number of specific hypotheses. The aim of this study was to compare
different approaches in low-dimensional settings using (a) real data from the CKDGen Consortium and (b) a
simulation study.

Results: In both application and simulation FWER approaches were less powerful compared to FDR control
methods, whether a larger number of hypotheses were tested or not. Most powerful was the q-value method.
However, the specificity of this method to maintain true null hypotheses was especially decreased when the
number of tested hypotheses was small. In this low-dimensional situation, estimation of the proportion of true null
hypotheses was biased.

Conclusions: The results highlight the importance of a sizeable data set for a reliable estimation of the proportion
of true null hypotheses. Consequently, methods relying on this estimation should only be applied in high-
dimensional settings. Furthermore, if the focus lies on testing of a small number of hypotheses such as in
replication settings, FWER methods rather than FDR methods should be preferred to maintain high specificity.
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Background
Advances in molecular biology and laboratory techniques
allow for evaluating a multitude of different features in
humans on a large scale to elucidate (patho-)physiology
and risk factors for a specific disease or its progression. In
recent studies, up to millions of features are often assessed
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simultaneously in discovery set analyses such as in
genome-wide association studies (GWAS) where single
nucleotide polymorphisms (SNPs) are evaluated with
respect to a single trait or clinical outcome [1]. For rea-
sons of practicability, the usual analysis procedure of such
high-dimensional data comprises statistical testing of each
single feature separately with the outcome of interest [2].
Statistical testing aims to verify a hypothesis, which is

either rejected or accepted based on the observed test
statistic [3]. Depending on the decision, there are two
possible mistakes that can occur: The null hypothesis
might be erroneously rejected although it is true (false
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positive decision, type I error) or failed to reject al-
though it is false (false negative decision, type II error).
The type I error can be controlled by defining a signifi-
cance threshold. For a single hypothesis, a commonly
used threshold is α=0.05. However, when testing mul-
tiple hypotheses such as in GWAS, the application of a
threshold like 0.05 across all tests will result in an un-
acceptable large number of false positive results. Conse-
quently, other ways to control the type I error are
required.
In general, there are different approaches: the control

of the family-wise error rate (FWER) and the control or
the estimation of the false discovery rate (FDR) [4].
FWER methods such as the well-known Bonferroni cor-
rection [5] were already proposed when the number of
tested hypotheses was not as large as, for example, in
GWAS nowadays. Although often applied, these
methods are thought to be too conservative in a high-
dimensional setting. Alternatively, FDR methods that are
less conservative and partially developed in the context
of high-dimensional data can be used. In addition, there
are approaches to estimate a significance measure for
each individual hypothesis, such as the local false discov-
ery rate (LFDR) [6] and the q-value [7].
FDR methods are also used quite frequently nowadays

and not only in high-dimensional settings but also in sit-
uations where the number of assessed features is small
such as in a replication set analysis restricted to the sig-
nificant hypotheses of the discovery set analysis. For a
small number of features, however, there are limited data
on the performance of FDR methods. The aim of this
study was thus to assess FDR methods in low-
dimensional data and to compare them to classic FWER
methods. For this purpose, we used real data obtained
from the CKDGen Consortium [8] to illustrate the dif-
ferent control methods. Moreover, we conducted a
simulation study to evaluate different control methods
in different settings.

Methods
Control methods
In order to describe different error control and estima-
tion methods, we adopted the notation of Benjamini and
Hochberg [9] on test decisions (Table 1). Assuming m
hypotheses H1, …, Hm were tested leading to the
Table 1 Statistical hypothesis test with possible test decisions relate

Test de

declared

Underlying truth true null U

non-null/alternative T (type

Total m-R
observation of the respective m p-values p1, …, pm. If
the truth would be known, type I errors are described
by V and type II errors by T. However, only m and the
total number of rejections, R, are observable in practice.
The overall significance threshold is called α.
Methods controlling the family-wise error rate (FWER)
FWER is defined as the probability of making at least
one false positive decision: FWER = Pr(V > 0). The
error rate can be controlled by a fixed threshold α. In
the following, four well known methods are consid-
ered (Table 2a):
The simplest and likely most often applied control

method of the FWER is the Bonferroni correction [10].
It compares each individual p-value p1, …, pm with the
fixed threshold α

m . P-values that are smaller than the
threshold lead to the rejection of the respective null
hypothesis. The Bonferroni correction guarantees the
control of the FWER at level α in a strong sense, which
means that the control is ensured for every proportion
of true null hypotheses. Bonferroni correction does not
demand independent p-values and hence can be applied
to any dependency structures. Nevertheless, Bonferroni
can be conservative; true alternatives might therefore be
missed.
To reduce the number of missed true alternatives, ap-

proaches to adjust Bonferroni correction were proposed
that use the number of independent tests (also: effective
number) instead of the actual number of conducted tests
(e.g. Li et al. [11]). Therefore, these approaches gain in
power over the traditional Bonferroni correction. In the
specific context of GWAS, for example, an adjusted
Bonferroni correction frequently applied was proposed
by Pe’er et al. [12] that accounts for correlation between
SNPs due to linkage disequilibrium (LD) by estimating
the number of independent genome-wide loci (n =
1,000,000 in individuals of European ancestry). Instead
of using the much larger number of all SNPs tested for
association (often several millions), the overall signifi-
cance threshold such as α=0.05 is divided by the number
of independent SNPs to define an adjusted significance
threshold. For GWAS on Europeans, for example, the
significance threshold becomes 0:05

1;000;000 ¼ 5� 10−8. Simi-

larly, the number of independent tests in the field of
d to the unknown truth (notation)

cision

non-significant declared significant Total

V (type I error, α) m0

II error, β) S m1

R m



Table 2 Algorithms of methods controlling family-wise error rate (FWER) and false discovery rate (FDR) Let m be the number
of hypotheses H1, …, Hm to test and p1, …, pm their respective m p-values. The p-values ranked in increasing order are defined
as p(1)≤…≤ p(m). The overall significance threshold is called α. Furthermore, let bπ0 be the estimated proportion of true null hypotheses
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metabolomics can be estimated with help of principle
component analysis to reduce the number of all tests
used in Bonferroni correction (e.g. Grams et al. [13]).
The other three FWER control methods considered

below are sequential methods for which p-values need
to be ranked in increasing order: p(1) ≤… ≤ p(m).
Holm’s step-down procedure [10] rejects at least as

many hypotheses as Bonferroni correction does. The
gain in power of Holm’s procedure by defining more fea-
tures significant is larger with larger number of alterna-
tive hypotheses. Like the Bonferroni correction, Holm’s
procedure has no restrictions with respect to the
dependency structure of p-values.
Hochberg’s step-up procedure [14] and also Hom-

mel’s procedure [15] make use of the assumption that
the p-values under the true null hypotheses hold a posi-
tive regression dependency. Positive dependency struc-
ture assumes the probability of a p-value belonging to
the null hypothesis to be increasing with increasing p-
value. In situations of a positive dependency structure,
Hochberg’s procedure is more powerful than Holm’s [4].
Hommel’s procedure, however, is the most powerful
FWER control procedure of the previously mentioned
methods when the assumption holds since it rejects at
least as many hypotheses as Hochberg does. One criticism
of the method lies in the higher computational load.

Methods controlling the false discovery rate (FDR)
In contrast to FWER, the false discovery rate (FDR) rep-
resents the proportion of false positives. This error rate
is defined as following: FDR ¼ E½VR jR > 0� PrðR > 0Þ:
FDR can be controlled at a fixed significance threshold
as well. Furthermore, Benjamini and Hochberg [9]
proved that every FWER control method controls the
FDR likewise. The three most common FDR control
methods that also require ordered p-values are consid-
ered below (Table 2b):
Benjamini-Hochberg’s linear step-up procedure [9]

controls the FDR at level α assuming positive dependent
p-values (see description above) under the true null



Brinster et al. BMC Bioinformatics  (2018) 19:78 Page 4 of 10
hypotheses such as Hommel’s and Hochberg’s FWER
procedures. It shows greater power than any of the
above mentioned FWER methods.
The two-stage linear step-up procedure [16] is an

adapted procedure of Benjamini-Hochberg’s that takes
the estimation of the proportion of the true null hypoth-
eses, π0, into account. The gain in power of the two-
stage procedure compared to the classical Benjamini-
Hochberg’s linear step-up procedure is dependent on
the proportion of true null hypotheses (π0) [4]. For π0
close to 1, the adapted version has low power. The
adaptive approach has been proven for independent
p-values only.
Finally, Benjamini-Yekutieli’s linear step-up proced-

ure [17] has no restrictions on the dependency structure
of p-values at all. It is more conservative compared to
the Benjamini-Hochberg’s linear step-up procedure [4]
and the two-stage linear step-up procedure [16].

Methods estimating the false discovery rate (FDR)
Recent approaches do not control the FDR in the trad-
itional sense, but rather estimate the proportion of false
discoveries. In order to estimate the FDR, the estimation
of the proportion of the true null hypotheses, π0, is con-
ducted first which can lead to a gain in power compared
to the classic FWER and FDR control methods. Two
common FDR estimation methods are described in the
following:
Storey’s q-value method [7] uses a Bayesian approach

to estimate the so-called positive false discovery rate
(pFDR), a modified definition of the false discovery rate
which assumes at least one rejection: pFDR ¼ E½VR jR > 0�.
The approach is based on the idea of estimating the pFDR
for a particular rejection region, γ, to achieve a control of
the pFDR. In order to determine a rejection region,
the q-value was introduced as the pFDR analogue of
the p-value. The q-value provides an error measure
for each observed p-value. It denotes the smallest pFDR
that can occur when calling that particular p-value sig-
nificant: qðpÞ ¼ min

fγ ≥pg
pFDRðγÞ . The approach assumes

independent, respectively “weak dependent” p-values,
whose dependency effect becomes negligible for a large
number of p-values [18]. The method provides an im-
provement in power compared to the classic Benjamini-
Hochberg’s linear step-up procedure due to its estimation
of π0 [7].
Likewise, Strimmer [19] proposed an alternative

method to estimate q-values based on pFDR (Strim-
mer’s q-value method). In addition, the method pro-
vides estimates of the so-called local false discovery rate
(LFDR, Strimmer’s LFDR approach) that again present
individual significance measures such as the q-values for
each p-value. It describes the probability that a p-value
leads to a false positive decision given the observed data
information. Estimations are based on a Bayesian ap-
proach using a modified Grenander density estimator
[19].

Software implementation
R packages are available for all described control
methods via CRAN [20] or Bioconductor [21]. Specific-
ally, we used the packages multtest [22], qvalue [23]
(Bioconductor), mutoss [24] and fdrtool [25] (CRAN) in
our study. We applied the methods using default options
of the packages. However, Storey’s q-value application
displayed an error whenever the estimated proportion of
true null hypotheses (π0) was close to zero, which oc-
curred when all p-values happened to be (very) small.
Therefore, we adjusted the range of input p-values
(“lambda”) in a stepwise manner until the application
allowed the estimation of π0. Further details on our R-
code and the stepwise algorithm can be obtained directly
from the authors. Statistical significance using either
FWER, FDR controlling or FDR estimation methods
such as the q-value methods or LFDR, was defined as a
cutoff of 0.05.

Data example
For illustration of the different control methods, we ob-
tained data from the CKDGen Consortium [8]. The aim
of this project was to identify genetic variants associated
with estimated glomerular filtration rate (eGFR), a meas-
ure for kidney function, and chronic kidney disease
(CKD). Altogether, 48 study groups provided genome-
wide summary statistics (GWAS results) from 50 study
populations for SNP associations with eGFR based on
serum creatinine (eGFRcrea) (2 study groups provided
GWAS results for 2 subpopulations separately). The dis-
covery meta-analysis of all GWAS was carried out using
an inverse variance-weighted fixed effect model and in-
corporated data from 133,413 individuals of European
ancestry. Genomic control had been applied before and
also after meta-analysis to reduce inflation and thus limit
the possibility of false positive results. In the meta-
analysis, 29 previously identified loci and 34 independent
novel loci (p-value < 10−6) were detected. Novel loci
were then verified in an independent replication set (14
studies; N = 42,166). For 16 of the 34 novel loci, replica-
tion analysis showed direction-consistent results with p-
value combining discovery and replication < 5×10−8 (see
Table 1 in Pattaro et al. [8]). For all but 1 SNP
(rs6795744), the reported q-values in the replication
study were < 0.05.
The results of the discovery meta-analyses for different

traits including eGFRcrea (approximately 2.2 million
SNPs) are publicly available [26]. Moreover, we obtained
the summary statistics from GWAS results for eGFRcrea
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of all studies contributing to the discovery (48 studies,
50 result files) for our project. For the illustration of the
different control methods in both discovery (high-di-
mensional) setting and replication (low-dimensional) set-
ting, we split the 50 study contributions into two sets
taking into account general study characteristics (popu-
lation-based study versus diseased cohort) and imput-
ation reference (HapMap versus 1000 Genomes [27]). By
conditioning on the presence of at least one study from
each of the 4 categories in either setting and on a sample
size ratio of 2:1, study contributions were randomly
assigned to discovery set or replication set. The final dis-
covery set contained 35 studies with 90,565 individuals
(67.9%) and the replication set 15 studies with 42,848 in-
dividuals (32.1%).
Based on the same set of SNPs as in the publicly avail-

able data set, our discovery set was processed similarly
to the original analysis [8] by using an inverse variance-
weighted fixed effect model and genomic control before
and after that step. For simplicity reasons we considered
two-sided p-values in the discovery and replication set
analysis. To select independently associated SNPs, SNPs
were clustered based on LD pruning using the –clump
command of Plink v1.90b2 (r2: 0.2, window: 1000 kb,
significance threshold for index SNP: 10−6) [28] and data
of 1000 Genomes project (phase 3) as the LD reference.
SNPs with the lowest p-value within a specific region
were considered as index SNPs. Few SNPs that were
either not present in the reference or tri-allelic were
excluded at this point. Using the prepared discovery
data, the various FDR and FWER methods were then ap-
plied exploratively.
Similar to the published analysis by the CKDGen Con-

sortium (Pattaro et al. [8]), independent index SNPs with
p-value < 10−6 were selected from the discovery set to
be followed up in the replication set. The various control
methods were subsequently applied to the results of the
meta-analysis (same model as before but without gen-
omic control) in the replication set to identify significant
findings.
Simulation study
In order to assess power and specificity of the described
FWER and FDR methods in detail, we conducted a
simulation study with varying settings, with special
emphasis on situations with a smaller number of tested
features. The R-code of the simulation study can be re-
quested from the author.
For this purpose, test statistics for varying numbers of

features (N = 4, 8, 16, 32, 64, 1000) were simulated to
generate data sets. Test statistics for single features were
simulated by drawing from Nðβ; 1Þ with either β = 0
(null hypothesis) or β ∈ {1.0, 2.5} (alternative or non-null
hypothesis). Depending on the number of features in a
given data set, the proportion of the true null hypotheses
π0 ∈ {25%, 50%, 75%, 100%} was a-priori defined. Each
scenario defined by the different combinations of param-
eters was repeated 100 times. In preparation of the sub-
sequent application of control methods, simulated test
statistics were transformed into two-sided p-values.
The power of each approach was defined as propor-

tion of correctly rejected hypotheses among all true
alternative hypotheses whereas the specificity was
defined as the proportion of correctly maintained hy-
potheses among all true null hypotheses. Furthermore,
we evaluated the estimation results of the proportion of
true null hypotheses of Storey’s and Strimmer’s q-value
methods within the simulation study.

Results
Data example
For the purpose of illustration, the 50 GWAS summary
statistics provided by contributing study groups included
in the original CKDGen discovery meta-analysis of
eGFRcrea were split into 2 sets resembling a high-
dimensional discovery set (35 studies, 90,565 individuals)
and a low-dimensional replication set (15 studies, 42,848
individuals). Details on the two sets are provided in
Additional file 1 and Additional file 2.
Similar to the published analysis by the CKDGen Con-

sortium (Pattaro et al. [8]), the discovery set was proc-
essed to select independent variants to be moved
forward to a low-dimensional replication analysis. Based
on p-value threshold < 10−6 followed by LD pruning, 57
index SNPs from different genomic regions were se-
lected from the discovery set. The replication analysis of
the 57 selected index SNPs showed direction-consistent
effect estimates for 56 SNPs.
Subsequently, the various control methods were

applied to the meta-analysis results of the replication set
to identify significant findings. Figure 1 presents the
number of significant results of the different control
procedures. Since the FWER methods Holm, Hochberg,
and Hommel declared the same p-values as significant,
we decided to display the performance of Hommel’s ap-
proach only.
In contrast to FDR methods, FWER methods rejected

the smallest number of hypotheses with Bonferroni
being least powerful. Among the FDR methods, FDR
estimating methods by Strimmer and Storey provided
more power. Storey’s q-value method rejected all
hypotheses and it was the only approach which declared
the direction-inconsistent SNP as significant.
As expected, the applied FWER and FDR methods

showed a monotone subset behavior related to rejected
hypotheses, i.e. that the p-values declared significant
from a more conservative approach were always



Fig. 1 CKDGen data example – Number of significant p-values
(regions) in replication set. Applied procedures controlling the type I
error: Bonferroni correction (BO), Hommel’s procedure (HO),
Benjamini-Yekutieli’s procedure (BY), Strimmer’s LFDR method (LFDR),
Benjamini-Hochberg’s procedure (BH), Two-stage procedure (TSBH),
Strimmer’s q-value method (qv Str), Storey’s q-value method (qv
Sto). Results are ordered by number of significant p-values leading
to a separation of FDR methods from FWER methods (indicated by
dashed line). Additional significant p-values from one approach to
another are indicated by decreasing gray shades within the bars
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included in the set of p-values declared significant from
a less conservative method. This is a consequence of the
methods’ property that – if a specific p-value is declared
significant – all other smaller p-values are also declared
significant.

Simulation study
Power and specificity of control methods
In a setting where the proportion of true null hypoth-
eses, π0, is 100%, Storey’s and Strimmer’s q-value
methods most often falsely rejected true null hypotheses
when the number of tested hypotheses N is small (≤32),
while for larger numbers of tested hypotheses and/or
other methods the number of erroneous decisions
mostly did not exceed 5 (Fig. 2a). Benjamini-Yekutieli’s
procedure and Strimmer’s LFDR approach performed
best with 0 to 3 repetitions of falsely rejected hypotheses
for all N. As a remark, Strimmer’s LFDR approach could
not provide any results for N = 4. Specificity of methods
to correctly maintain hypotheses is similarly good on
average; only Storey’s q-value method showed decreased
specificity when the number of tested hypotheses was
small.
When the proportion of true null hypotheses was <

100%, the power to correctly reject hypotheses was
dependent on π0, the effect size (β) and N. On average,
it increased with decreasing π0, increasing β and
decreasing N overall. Figure 2b, c and d exemplarily
show the average power for varying π0 and β1 = 2.5
under the alternative hypothesis, in dependence on N.
Further figures for an effect size of β1= 1 can be found
in the Additional file 3.
As expected, FDR methods, especially the two q-

values methods, were more powerful than FWER
methods. In terms of specificity, Storey’s q-value method
followed by Strimmer’s q-value method showed lower
specificity results for small N (≤16) than other methods.
We observed similarity in specificities among the other
methods. Again, Strimmer’s LFDR approach did not pro-
vide results when number of hypotheses were < 8 (Fig.
2b) or < 16 (Fig. 2c and d).

Estimation of proportion of true null hypotheses
LFDR and q-value methods rely on the estimation of π0.
Figure 3 displays its estimations using Storey’s and
Strimmer’s q-value approaches for varying π0 and β1 =
2.5 under the alternative hypotheses (if present), while
remaining figures are in the Additional file 4.
For small N, both estimations showed large variability

within repetitions. Throughout all scenarios, Storey’s
method showed greater estimation ranges of π0 com-
pared to Strimmer’s q-value approach. Moreover, estima-
tion of π0 was often biased. Only when β1 = 2.5 and N
was larger than 32, bias essentially disappeared. When β1
= 1, however, π0 was overestimated on average, even for
larger N.

Discussion
FDR estimation methods such as Strimmer’s LFDR or
Storey’s q-value method have been mainly developed for
high-dimensional settings, of which discovery GWAS is
one. They provide a less conservative approach com-
pared to standard FWER and FDR control methods. The
LFDR as well as the q-value methods are Bayesian ap-
proaches which take the whole information on the data
itself into account when estimating the proportion of
true null hypotheses, π0. Consequently, for the purposes
of FDR estimation, a high-dimensional setting is a great
advantage allowing reasonable estimation of π0. Though
controversial, the q-value methods as well as other FDR
methods have been used in low-dimensional settings as
well, such as in the analysis of replication data sets con-
sisting of only limited number of SNPs. We thus aimed
to compare various FWER and FDR methods including
the q-value method in order to assess their power and
specificity in low-dimensional settings using simulated
data and application to real data.
The analysis of our example data from the CKDGen

Consortium [8] showed that the FDR estimation
methods by Strimmer and Storey declared the largest
number of SNPs significant in the low-dimensional



Fig. 2 Simulation – Number of repetitions with at least 1 false positive decision and average specificity for π0 = 100% (a). Average power and specificity
for β1 = 2.5 and π0 = 75% (b), 50% (c), 25% (d). Applied procedures controlling the type I error: Bonferroni correction, Hommel’s procedure, Benjamini-
Hochberg’s procedure, Two-stage procedure, Benjamini-Yekutieli’s procedure, Storey’s q-value method, Strimmer’s q-value method, Strimmer’s LFDR
method. Power is defined as the proportion of correctly rejected hypotheses and specificity as the proportion of correctly maintained hypotheses. Both
proportions potentially range from 0 to 1. Simulations for each scenario were repeated 100 times
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replication analysis of 57 SNPs, followed by the FDR
control methods of Benjamini-Hochberg and Benjamini-
Yekutieli. As expected, the FWER control methods
showed the lowest power by declaring the least number
of p-values significant. Of note, Storey’s q-value method
was the only approach which declared the single SNP
(rs10201691) that showed direction-inconsistent results
between the discovery and replication analyses as signifi-
cant in the replication analysis.
To deepen the understanding, we conducted a simula-

tion study to systematically assess different scenarios. As
one result, the differences between the methods that
were seen in the application could be confirmed. For
example, Storey’s q-value method showed the highest
power especially for a small number of hypotheses. At
the same time, however, the specificity results for Sto-
rey’s method were lowest when number of tested
hypotheses was small. In the presence of alternative hy-
potheses (π0 < 100%), we also observed that the FDR
methods, Benjamini-Hochberg and the two-stage
approach, − although less powerful than both q-value
methods – were more powerful than the FWER control
methods of Bonferroni and Hommel, but of similar
specificity.
Since both q-value methods as well as LFDR rely on

the estimation of π0, we also investigated its estimation
accuracy using the different approaches. For both
methods, the estimate of π0 was often biased, especially
when numbers of tested hypotheses were small. In
addition, Storey’s q-value method showed much higher
variance compared to Strimmer’s approach. In summary,
the q-value methods rejected in general the largest num-
ber of hypotheses which is especially of advantage if
researchers wish to obtain a greater pool of significant
features to be followed-up in subsequent studies, at the
expense of specificity. However, their application should
be restricted to high-dimensional settings.
The gain in power for both q-value methods, how-

ever, was not observed for LFDR in the simulation
study. Strimmer reported the gain in power of the q-
value method compared to the LFDR as well and
explained it as the tendency of q-values being smaller
or equal compared to LFDR for a given set of p-
values [19]. In the context of gene expression, Lai
[29] mentioned a tendency of the q-value to under-
estimate the true FDR leading to a larger number of
low q-values especially when the proportion of differ-
entially expressed genes is small or the overall differ-
ential expression signal is weak. We also observed an
underestimation in our simulation study, especially
for a smaller number of p-values. To overcome this
issue, Lai [29] suggested a conservative adjustment of
the estimation of the proportion of true null hypoth-
eses, the p-values or the number of identified genes.



Fig. 3 Simulation – Observed estimations of π0 for Storey’s (qv) and Strimmer’s q-value methods (fdr) for π0 = 100% (a) and for β1 = 2.5
and π0 = 75% (b), 50% (c), 25% (d)
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Moreover, when applying q-value methods or LFDR,
correct interpretation of these estimates is requested
that is different for the q-values and for LFDR. Strimmer
[19] highlighted the easier interpretation of the LFDR
compared to the q-value since the LFDR provides point
estimates for the proportion of false discoveries for indi-
vidual hypotheses whereas the q-value of a p-value is the
expected proportion of false positives when calling that
feature significant [18]. In any case, when applying FDR
estimation methods, there is a critical need for a sizeable
data set [18, 19]. Storey and Tibshirani [18] described
their q-value method as a more explorative tool com-
pared to FWER methods and therefore as well-
performing procedure in high-dimensional data. A more
recent FDR estimation approach by Stephens [30] pro-
vides an alternative to the LFDR, the so called local false
sign rate. This empirical Bayes approach describes the
probability of making an error in the sign of a certain
variant if forced to declare it either as true or false
discovery. Simulation studies showed smaller and more
accurate estimation of π0 by Stephens’ approach compared
to Storey’s q-value method leading to more significant dis-
coveries [30]. However, small sample sizes represent a
challenge for this FDR estimation approach as well.
Another observation of our simulation study worth

mentioning was that the FDR method by Benjamini-
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Yekutieli for arbitrary dependencies, and thus assumed
to be more conservative than the Benjamini-Hochberg
method, was not only outperformed by this method in
terms of power in our application data and simulation,
but also less powerful than FWER control methods in
some scenarios of our simulation. The latter had already
been observed, especially if the expected number of al-
ternative hypotheses is very small [4]. Since Benjamini-
Hochberg’s approach controls the FDR at level π0α,
adaptive FDR control methods such as the two-stage ap-
proach were developed to control the FDR directly at
level α by taking estimated π0 into account and thereby
gaining power. Especially if π0 is substantially smaller
than 1, the adaptive approaches might outperform
Benjamini-Hochberg’s procedure [4].
Before concluding the discussion on results, some limi-

tations of this study warrant mentioning: Although it was
important for us to illustrate the effect of the different
control methods on the results in real data, observed dif-
ferences may not be transferrable to every other study set-
ting in general. To overcome this limitation, we
conducted a simulation study. Still, the simulation study
has limitations of its own: We used a simplified approach
to generate data by simulating test statistics rather than
analytical data sets to which control methods would have
been applied after analysis. Furthermore, we explored a
limited set of scenarios and did not consider dependency
structures but evaluated p-values that were derived from
independently simulated test statistics. Hence, additional
work could add to the current understanding.
In the face of all the different control methods, it is

clear that the decision on what method is actually ap-
plied in a given setting should be made not only before
the analysis is conducted but also on reasonable ground.
Among others, aspects to consider include: (a) the
amount of tests to be conducted, (b) the general aim of
testing, (c) what is known or can be assumed about de-
pendency structure of p-values under the true null hy-
pothesis and (d) what is the assumed proportion of null
hypotheses.
If the general aim of the analysis lies on the specific

testing of individual hypotheses, FWER control methods
should be preferred to FDR control or estimation
methods because they provide higher specificity by cor-
rectly maintaining true null hypotheses. Within FWER
control methods, the power might differ slightly and is,
especially, in dependence of given p-value structure. If a
positive structure can be assumed, Hochberg’s or Hom-
mel’s procedures are preferable to gain power. The com-
putational burden that comes along with Hommel’s
procedure should not be a true issue nowadays. Goeman
and Solari [4] especially expected a gain in power of
Hochberg’s and Hommel’s compared to Bonferroni’s and
Holm’s methods if the proportion of alternative
hypotheses is rather large. We, however, observed only a
rather small gain in power in our simulation study that
might be induced by the simulation of independent test
statistics.
If researchers, however, wish to identify a promising

set of hypotheses for follow-up rather than specific test-
ing of single hypotheses with high specificity, we agree
with Goeman and Solari [4] who recommended the use
of FDR control methods. To reach highest power, one
may even apply the FDR estimating method of q-values,
when the number of tests is reasonably large.

Conclusions
In summary, our findings highlight the importance of a
larger data set for the application of FDR estimation
methods in order to guarantee reliable estimation of the
proportion of true null hypotheses. The choice of con-
trol method mainly depends on the specific setting and
the aims of an analysis. For example, when high specifi-
city in testing of a limited number of hypotheses as in a
replication study is desired, we recommend to utilize
FWER methods rather than FDR methods.
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