44 research outputs found

    A Globally Stable Lyapunov Pointing and Rate Controller for the Magnetospheric MultiScale Mission (MMS)

    Get PDF
    The Magnetospheric MultiScale Mission (MMS) is scheduled to launch in late 2014. Its primary goal is to discover the fundamental plasma physics processes of reconnection in the Earth's magnetosphere. Each of the four MMS spacecraft is spin-stabilized at a nominal rate of 3 RPM. Traditional spin-stabilized spacecraft have used a number of separate modes to control nutation, spin rate, and precession. To reduce the number of modes and simplify operations, the Delta-H control mode is designed to accomplish nutation control, spin rate control, and precession control simultaneously. A nonlinear design technique, Lyapunov's method, is used to design the Delta-H control mode. A global spin rate controller selected as the baseline controller for MMS, proved to be insufficient due to an ambiguity in the attitude. Lyapunov's design method was used to solve this ambiguity, resulting in a controller that meets the design goals. Simulation results show the advantage of the pointing and rate controller for maneuvers larger than 90 deg and provide insight into the performance of this controller

    A Modified Lunar Reconnaissance Orbiter (LRO) High Gain Antenna (HGA) Controller Based on Flight Performance

    Get PDF
    The National Aeronautics and Space Administration's (NASA) Lunar Reconnaissance Orbiter (LRO) was launched on June 18, 2009 and is currently in a 50 km mean altitude polar orbit around the Moon. LRO was designed and built by the NASA Goddard Space Flight Center in Greenbelt, MD. The spacecraft is three-axis stabilized via the attitude control system (ACS), which is composed of various control modes using different sets of sensors and actuators. In addition to pointing the spacecraft, the ACS is responsible for pointing LRO s two appendages, the Solar Array (SA) and the High Gain Antenna (HGA). This study reviews LRO s HGA control system. Starting with an overview of the HGA system, the paper delves into the single input single output (SISO) linear analysis followed by the controller design. Based on flight results, an alternate control scheme is devised to address inherent features in the flight control system. The modified control scheme couples the HGA loop with the spacecraft pointing control loop, and through analysis is shown to be stable and improve transient performance. Although proposed, the LRO project decided against implementing this modification

    Canyval-x: Cubesat Astronomy by NASA and Yonsei Using Virtual Telescope Alignment Experiment

    Get PDF
    CANYVAL-X is a technology demonstration CubeSat mission with a primary objective of validating technologies that allow two spacecraft to fly in formation along an inertial line-of-sight (i.e., align two spacecraft to an inertial source). Demonstration of precision dual-spacecraft alignment achieving fine angular precision enables a variety of cutting-edge heliophysics and astrophysics science

    Lunar Reconnaissance Orbiter (LRO) Guidance, Navigation and Control (GN&C) Overview

    Get PDF
    The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle and into a direct insertion trajectory to the oon. LRO, which was designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. The mission has a nominal life of 1 year as its seven instruments find safe landing sites, locate potential resources, characterize the radiation environment, and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera of the Apollo landing sites appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Guidance, Navigation and Control (GN&C) subsystem is made up of an onboard attitude control system (ACS) and a hardware suite of sensors and actuators. The LRO onboard ACS is a collection of algorithms based on high level and derived requirements, and reflect the science and operational events throughout the mission lifetime. The primary control mode is the Observing mode, which maintains the lunar pointing orientation and any offset pointing from this baseline. It is within this mode that all science instrument calibrations, slews and science data is collected. Because of a high accuracy requirement for knowledge and pointing, the Observing mode makes use of star tracker (ST) measurement data to determine an instantaneous attitude pointing. But even the star trackers alone do not meet the tight requirements, so a six-state Kalman Filter is employed to improve the noisy measurement data. The Observing mode obtains its rate information from an inertial reference unit (IRU) and in the event of an IRU failure, the rate data is be derived from the star tracker, but with degraded pointing performance. The Delta-V control mode responsibility is to maintain attitude pointing during the cruise trajectory, insertion burns and lunar orbit maintenance by adjustments made to the spacecraft s velocity magnitude and vector direction. The ACS also provides for a thruster based system momentum management algorithm (known as Delta-H) to maintain the system and wheel momentum to within acceptable levels. In the event an anomaly causes the LRO spacecraft to lose the ability to maintain its current attitude pointing, a Sun Safe mode is included in the ACS for the purpose of providing a known power and thermally safe coarse inertial sun attitude for an indefinite period of time, within the manageable limits of the reaction wheels. The Sun Safe mode is also the initial spacecraft control mode off of the launch vehicle and provides for a means to null tip-off rates immediately after separation. The nominal configuration is to use the IRU for rate information in the controller. In the event of a gyro failure a gyroless control mode was developed that computes rate information from the CSS data

    A Multibody Slosh Analysis for the Lunar Reconnaissance Orbiter

    Get PDF
    The Lunar Reconnaissance Orbiter (LRO) undergoes a series of thruster maneuvers to attain lunar orbit. The first of the series of lunar orbit insertion (LOI) maneuvers is crucial to the success of the mission. Therefore, it is important to characterize the disturbances acting on the spacecraft during this phase of the mission. This paper focuses on the internal disturbance force caused by fuel slosh and its impact on attitude control. During the first LOI maneuver (LOI-1), approximately 50% of the total fuel mass is used or roughly 25% of the spacecraft s wet mass, during the 38-minute burn. The forces imparted on the spacecraft from the fuel are dependent on the fill level of the two fuel tanks. During LOI-1, the fill level in both tanks varies greatly and thus so does the disturbance level caused by the fuel. It is therefore necessary to account for the time-varying mass properties of the spacecraft and the effects of the varying fuel levels during the entire 38-minute maneuver. Two simulations are developed in Mathworks s Simulink to analyze the fuel slosh effect. The first model, a baseline model, is a rigid body dynamics model where the fuel slosh is not modeled. The second is a multibody model, developed using a multibody dynamics toolbox, where each of the two fuel tanks and the remaining spacecraft body are treated as separate rigid bodies. The simulations are executed in a piece-wise fashion to account for the time-varying mass properties, and to accommodate the multibody toolbox. Disturbances caused by fuel slosh during both lunar and mission orbit insertions will be analyzed through simulation of different dynamics models. Results of the analysis will show the effects of the slosh disturbance on the spacecraft s attitude

    A General Closed-Form Solution for the Lunar Reconnaissance Orbiter (LRO) Antenna Pointing System

    Get PDF
    The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle into a direct insertion trajectory to the Moon LRO, designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. During the mission s nominal life of one year its six instruments and one technology demonstrator will find safe landing site, locate potential resources, characterize the radiation environment and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera (LROC NAC) of the Apollo landing sites have appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Attitude Control System (ACS), in addition to controlling the orientation of the spacecraft is also responsible for pointing the High Gain Antenna (HGA). A dual-axis (or double-gimbaled) antenna, deployed on a meter-long boom, is required to point at a selected Earth ground station. Due to signal loss over the distance from the Moon to Earth, pointing precision for the antenna system is very tight. Since the HGA has to be deployed in spaceflight, its exact geometry relative to the spacecraft body is uncertain. In addition, thermal distortions and mechanical errors/tolerances must be characterized and removed to realize the greatest gain from the antenna system. These reasons necessitate the need for an in-flight calibration. Once in orbit around the moon, a series of attitude maneuvers was conducted to provide data needed to determine optimal parameters to load onboard, which would account for the environmental and mechanical errors at any antenna orientation. The nominal geometry for the HGA involves an outer gimbal axis that is exactly perpendicular to the inner gimbal axis, and a target direction that is exactly perpendicular to the outer gimbal axis. For this nominal geometry, closed-form solutions of the desired gimbal angles are simple to get for a desired target direction specified in the spacecraft body fame. If the gimbal axes and the antenna boresight are slightly misaligned, the nominal closed-form solution is not sufficiently accurate for computing the gimbal angles needed to point at a target. In this situation, either a general closed-form solution has to be developed for a mechanism with general geometries, or a correction scheme has to be applied to the nominal closed-form solutions. The latter has been adopted for Solar Dynamics Observatory (SDO) as can be seen in Reference 1, and the former has been used for LRO. The advantage of the general closed-form solution is the use of a small number of parameters for the correction of nominal solutions, especially in the regions near singularities. Singularities here refer to cases when the nominal closed-form solutions have two or more solutions. Algorithm complexity, however, is the disadvantage of the general closed-form solution

    Real-Time Visualization of Spacecraft Telemetry for the GLAST and LRO Missions

    Get PDF
    GlastCam and LROCam are closely-related tools developed at NASA Goddard Space Flight Center for real-time visualization of spacecraft telemetry, developed for the Gamma-Ray Large Area Space Telescope (GLAST) and Lunar Reconnaissance Orbiter (LRO) missions, respectively. Derived from a common simulation tool, they use related but different architectures to ingest real-time spacecraft telemetry and ground predicted ephemerides, and to compute and display features of special interest to each mission in its operational environment. We describe the architectures of GlastCam and LROCam, the customizations required to fit into the mission operations environment, and the features that were found to be especially useful in early operations for their respective missions. Both tools have a primary window depicting a three-dimensional Cam view of the spacecraft that may be freely manipulated by the user. The scene is augmented with fields of view, pointing constraints, and other features which enhance situational awareness. Each tool also has another "Map" window showing the spacecraft's groundtrack projected onto a map of the Earth or Moon, along with useful features such as the Sun, eclipse regions, and TDRS satellite locations. Additional windows support specialized checkout tasks. One such window shows the star tracker fields of view, with tracking window locations and the mission star catalog. This view was instrumental for GLAST in quickly resolving a star tracker mounting polarity issue; visualization made the 180-deg mismatch immediately obvious. Full access to GlastCam's source code also made possible a rapid coarse star tracker mounting calibration with some on the fly code adjustments; adding a fine grid to measure alignment offsets, and introducing a calibration quaternion which could be adjusted within GlastCam without perturbing the flight parameters. This calibration, from concept to completion, took less than half an hour. Both GlastCam and LROCam were developed in the C language, with non-proprietary support libraries, for ease of customization and portability. This no-blackboxes aspect enables engineers to adapt quickly to unforeseen circumstances in the intense operations environment. GlastCam and LROCam were installed on multiple workstations in the operations support rooms, allowing independent use by multiple subsystems, systems engineers and managers, with negligible draw on telemetry system resources

    Launch and Commissioning of the Lunar Reconnaissance Orbiter (LRO)

    Get PDF
    The Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station. LRO, designed, built, and operated by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. To date, the Guidance, Navigation and Control (GN&C) subsystem has operated nominally and met all requirements. However, during the early phase of the mission, the GN&C Team encountered some anomalies. For example, during the Solar Array and High Gain Antenna deployments, one of the safing action points tripped, which was not expected. Also, the spacecraft transitioned to its safe hold mode, SunSafe, due to encountering an end of file for an ephemeris table. During the five-day lunar acquisition, one of the star trackers triggered the spacecraft to transition into a safe hold configuration, the cause of which was determined. These events offered invaluable insight to better understand the performance of the system they designed. An overview of the GN&C subsystem will be followed by a mission timeline. Then, interesting flight performance as well as anomalies encountered by the GN&C Team will be discussed in chronological order

    Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying

    Get PDF
    Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m 500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as micro-thruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept

    The Virtual Space Telescope: A New Class of Science Missions

    Get PDF
    Many science investigations proposed by GSFC require two spacecraft alignment across a long distance to form a virtual space telescope. Forming a Virtual Space telescope requires advances in Guidance, Navigation, and Control (GNC) enabling the distribution of monolithic telescopes across multiple space platforms. The capability to align multiple spacecraft to an intertial target is at a low maturity state and we present a roadmap to advance the system-level capability to be flight ready in preparation of various science applications. An engineering proof of concept, called the CANYVAL-X CubeSat MIssion is presented. CANYVAL-X's advancement will decrease risk for a potential starshade mission that would fly with WFIRST
    corecore