

CANYVAL-X

CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment experiment

Mission Goal: CubeSat Demonstration of Virtual Telescope Alignment Technology in Space

Mission Description

CANYVAL-X is a technology demonstration CubeSat mission with a primary objective of validating technologies that allow two spacecraft to fly in formation along an inertial line-of-sight (i.e., align two spacecraft to an inertial source). Demonstration of precision dual-spacecraft alignment achieving fine angular precision enables a variety of cutting-edge heliophysics and astrophysics science.

Project Status

The George Washington University Micro-propulsion and Nanotechnology Lab

- · Developed mCAT analog electronics and control design, based on system developed for BRICSAT mission.
- · Delivered mCAT thruster heads

Yonsei University

- · Designed, built, and tested the 1U and 2U spacecraft and are currently integrating the mCAT.
- · Spacecraft environmental testing at KARI.
- · Developed ground system to conduct mission operations and alignment experiment.

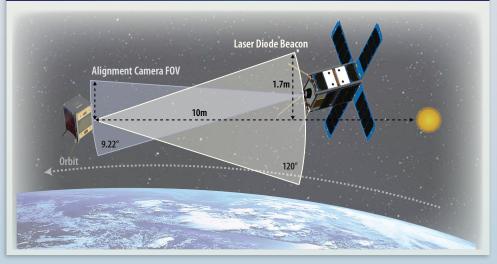
NASA

- · Delivered Miniature Fine Sun Sensor provides attitude measurement for 2U spacecraft.
- Completed George Washington University Micro Cathode Arc Thruster (mCAT) flight electronics, performed system testing, and delivered mCAT - provides thrust for 2U cubesat.
- · Conducting an assessment of CANYVAL-X's GN&C in regards to formation acquisition and alignment.
- · Traveled to Yonsei to collaborate with team.

Launch on Falcon9 in mid-2016.

NASA Delivered Hardware

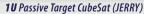
Sept 2015



Fine Sun Sensor (NASA)

Delivered June 2015

Virtual Telescope Inertial Alignment



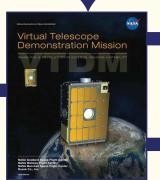
Partnership

NASA, Yonsei University, and The George Washington University are collaborating to develop the mission.

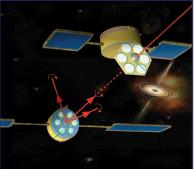
CANYVAL-X

CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment experiment

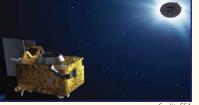
Road Map to Cutting Edge Science


Ground/Lab Demo of Component Technologies

CANYVAL-X matures formation alignment technology enabling the next-generation of distributed space virtual telescopes.



In-space alignment experiment



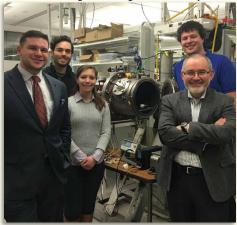
In-space science-class virtual telescope

Astronomy

Heliophysics

Credit: ESA

Mission and GNC Specification		
Properties	Value	
	JERRY	TOM
Mission Life Time	3-6 month	
Payload	3 Laser Diodes	Visible Camera (NanoCam)
Payload Performance	Half Intensity Beam Angle = $\pm 60^{\circ}$ Minimum angle (15.5°) intensity > 96%	2048 x 1536 pixels CMOS sensor 35mm lens/ F1.9, 9.22° FOV
GN&C	(Magnetorquer, sun sensor)	mCAT, Sun Sensor, Nano- Cam, Reaction Wheels, Mag TorqRods
Data Rate	Up/Downlink: 4.8 kbps (UHF)	Uplink: 4 Bkbps (UHF) Downlink 100 kbps (S-band)
Mass	1.0 kg	2.7 kg
Relative Distance	> 10m (Collision Avoidance)	
Orbit Control	GWU	20cm (1 DOF mCAT x4+3axis Reaction Wheel)
Orbit Determination	Each Axis ± 10cm (GPS)	
Attitude Control	5° (Magnetorquer) 10m x tan(5°)=88cm	1° (Reaction Wheel) 10m x tan(1°)=18cm


CANYVAL-X Teams

NASA

The George Washington University

NASA Programmatic Point of Contact: Neerav Shah, Neerav.Shah-1@nasa.gov