21 research outputs found

    Effect of biocomposite edible coatings based on pea starch and guar gum on nutritional quality of ‘Valencia’ orange during storage

    Get PDF
    Application of environmentally friendly components is an approach for substitution of synthetic substances in commercial waxes applied to citrus. In this study, the effect of biocomposite edible coatings based on pea starch and guar gum (PSGG) on total vitamin C, phenolic, flavonoid, anthocyanins, and carotenoid content, and antioxidant capacity of ‘Valencia’ orange stored at 5 °C and 20 °C for four weeks were evaluated. The fruits were coated by a single layer PSGG coating, blended composite PSGG coating containing shellac (Sh) and oleic acid as hydrophobic compounds (PSGG-Sh), and a layer-by-layer (LBL) coating (PSGG as an internal layer and Sh as an external layer). The results showed no significant differences in changes of bioactive compounds between coating treatments after first week storage at both temperatures. The PSGG coatings incorporated with hydrophobic compounds (PSGG-Sh) better preserved the nutritional value and the antioxidant potential of oranges during storage compared with other treatments. The single layer PSGG coating was almost similar to bilayer coating in preserving nutritional value of fruit during storage and less effective than the blended composite PSGG-Sh coating

    Characterization of pea starch-guar gum biocomposite edible films enriched by natural antimicrobial agents for active food packaging

    Get PDF
    Antimicrobial activity of epigallocatechin-3-gallate (EGCG) and two native Australian plants blueberry ash (BBA) fruit and macadamia (MAC) skin extracts against nine pathogenic and spoilage bacteria and seven strains of fungi, using an agar well diffusion assay were investigated. The minimum inhibitory concentrations (MIC) of these compounds were calculated using 96-well microtiter plates method. Finally, active antimicrobial packaging films were prepared by incorporation of EGCG, BBA and MAC extracts at 1-, 2-, 3-, and 4-fold of their correspondence MIC values into edible films based on pea starch and guar gum (PSGG). The antimicrobial activity of films was investigated against target microorganisms by agar disc diffusion technique and quantified using the viable cell count assay. Among the test microorganisms, Salmonella typhimurium and Rhizopus sp. were the most resistance to active films. Films containing EGCG showed the highest activity against all test strains. As the concentration of compounds increased higher than 2 × MIC, the mechanical characteristics of the films were affected considerably. The results indicated that EGCG-PSGG, BBA-PSGG and MAC-PSGG films can be used as active food packaging systems for preserving food safety and prolonging the shelf-life of the packaged food

    Physical, barrier, and antioxidant properties of pea starch-guar gum biocomposite edible films by Incorporation of natural plant extracts

    Get PDF
    Active food packaging based on pea starch and guar gum (PSGG) films containing natural antioxidants (NAs) was developed. Four kinds of NAs (epigallocatechin gallate (EGCG), blueberry ash (BBA) fruit extract, macadamia (MAC) peel extract, and banana (BAN) peel extract) were added into the PSGG-based films as antioxidant additive. The effects of these compounds at different amounts on the physical and antioxidant characteristics of the PSGG film were investigated. The antioxidant activity was calculated with three analytical assays: DPPH radical scavenging ability assay, cupric reducing antioxidant capacity (CUPRAC), and ferric reducing activity power (FRAP). EGCG-PSGG films showed higher antioxidant activity, followed by BBA-PSGG, MAC-PSGG, and BAN-PSGG films, at all concentrations (0.75–3 mg/mL) and with all procedures tested. Additionally, the antioxidant activity of films showed a concentration dependency. The results revealed that addition of NAs made the PSGG film darker and less transparent. However, the moisture barrier was significantly improved when NAs were incorporated into the film. The FTIR spectra were examined to determine the interactions between polymers and NAs. The results suggested that incorporation of EGCG, BBA, MAC, and BAN into PSGG films have great potential for use as active food packaging for food preservation

    Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges

    Get PDF
    Novel edible composite coatings based on pea starch and guar gum (PSGG), PSGG blended with lipid mixture containing the hydrophobic compounds shellac and oleic acid (PSGG-Sh), and a layer-by-layer (LBL) approach (PSGG as an internal layer and shellac as an external layer), were investigated and compared with a commercial wax (CW) and uncoated fruit on postharvest quality of ‘Valencia’ oranges held for up to four weeks at 20 °C and 5 °C with an additional storage for 7 d at 20 °C. The incorporation of lipid compounds into the PSGG coatings (PSGG-Sh) generally resulted in the best performance in reducing fruit respiration rate, ethylene production, weight and firmness loss, peel pitting, and fruit decay rate of the coated oranges. Fruit coated with PSGG-Sh and a single layer PSGG coatings generally resulted in higher scores for overall flavor and freshness after four weeks at 5 °C followed by one week at 20 °C than uncoated fruit, as assessed by a sensory panel. Although the LBL coating reduced weight loss and respiration rate with improved firmness retention to a greater extent than the single layer PSGG coating, the bilayer coating also resulted in higher levels of ethanol causing increased perception of off-flavors. Overall results suggested that PSGG-based edible coatings could be a beneficial substitute to common commercial waxes for maintaining quality and storability, as well as extending shelf life of citrus fruit and potentially other fresh horticultural produce

    Preventing TMTO attack in AES-CCMP in IEEE 802.11i

    Get PDF
    This study is conducted to establish an alternative, creative technique for the structure of Advanced Encryption Standard-Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (AES-CCMP) key in IEEE 802.11i. the structure of proposed method increase the length of AES-CCMP key from 128 bits to 256 bits to eliminate Time-Memory Trade-Off (TMTO) attacks by using three proposed solutions including Random Nonce Key, Four Way Handshake alteration and Pseudo Random Function (PRF). Besides, two proposed and classic methods are compared in terms of TMTO attack probability, avalanche effect, changes in neighbor blocks, memory usage and execution time. According to the results, the proposed method is completely resistant to TMTO attack. In addition, avalanche effect and change in neighbor blocks of proposed method are so near to optimized state and also, two classic and proposed methods are approximately the same in case of memory usage and execution time

    Use of response surface methodology (RSM) to optimize pea starch-chitosan novel edible film formulation

    Get PDF
    The aim of this study was to develop an optimal formulation for preparation of an edible film from chitosan, pea starch and glycerol using response surface methodology (RSM). Three independent variables were assigned comprising chitosan (1-2%), pea starch (0.5-1.5%) and glycerol (0.5-1%) to design an empirical model best fit in physical, mechanical and barrier attributes. Impacts of independent variables on thickness, moisture content (MC), solubility, tensile strength (TS), elastic modulus (EM), elongation at break (EB) and water vapor permeability (WVP) of films were evaluated. All the parameters were found to have significant effects (p<0.05) on physical and mechanical properties of film. The optimal formulation for preparation of edible film from chitosan, pea starch and glycerol was 1% chitosan, 1.5% pea starch and 0.5% glycerol. An edible film with good physical and mechanical properties can be prepared with this formulation and thus this formulation can be further applied for testing on coating for fruit and vegetables

    Development of biocomposite films incorporated with different amounts of shellac, emulsifier, and surfactant

    Get PDF
    This study examined the effects of different ratios of shellac (20–60%), stearic acid (SA) (0-2%), and Tween-20 (0.1–0.5 ml) on the water vapor permeability (WVP) and mechanical properties of the pea starch-guar gum (PSGG) films which were evaluated by using response surface methodology (RSM). The incorporation of shellac into the PSGG film structure led to a slightly increased of film thickness. However the addition of higher concentrations of shellac did not improve the moisture barrier of PSGG film owing to the poor distribution of shellac in the film structure. Film formulated with 40% shellac, 1% SA, and 0.3% Tween-20 exhibited optimal functional properties. Moreover, the influence of the incorporation of different emulsifiers into the optimized film matrix was investigated by studying the physical, mechanical, and optical properties of the films. Films containing oleic acid (OA) showed not only lower thickness, WVP, moisture content, and water solubility, but also higher percentage of elongation (E), tensile strength (TS), and transparency compared with other fatty acids tested. Biocomposite pea starch-guar gum-shellac (PSGG-Sh) films containing OA can be considered to be sufficient for most of food packaging applications

    Physical and mechanical properties of a new edible film made of pea starch and guar gum as affected by glycols, sugars and polyols

    Get PDF
    The influence of different plasticizers (glycols, sugars and polyols) on the moisture sorption, mechanical, physical, optical, and microstructure characteristics of pea starch-guar gum (PSGG) film was studied. All plasticizers formed homogeneous, transparent, and smooth films, while PEG-400 did not produce film with suitable characteristics. Fourier transform infrared (FTIR) spectroscopy results indicated some interaction between plasticizers and the polymers. Scanning electron microscopy (SEM) observations of the films presented surfaces without cracks, breaks, or openings which were indicator of the miscibility and compatibility of employed plasticizers with PSGG films. The results showed that the films containing plasticizers with higher functional groups had lower equilibrium moisture content at aw < 0.4. In general, a reduction in tensile strength and Young's modulus and an increase in elongation at break were detected when molecular weight of plasticizers and relative humidity increased in all film formulations. Films plasticized with monosaccharide showed similar mechanical properties to those with sorbitol, but lower solubility and water vapour permeability (WVP), higher transparency and moisture content than the sorbitol-plasticized films. The most noticeable plasticization effect was exerted by following order: glycerol > EG > PG > xylitol > fructose > sorbitol > mannitol > galactose > glucose > sucrose > maltitol

    Three-Dimensional Graph Matching to Identify Secondary Structure Correspondence of Medium-Resolution Cryo-EM Density Maps

    Get PDF
    Cryo-electron microscopy (cryo-EM) is a structural technique that has played a significant role in protein structure determination in recent years. Compared to the traditional methods of X-ray crystallography and NMR spectroscopy, cryo-EM is capable of producing images of much larger protein complexes. However, cryo-EM reconstructions are limited to medium-resolution (~4–10 Å) for some cases. At this resolution range, a cryo-EM density map can hardly be used to directly determine the structure of proteins at atomic level resolutions, or even at their amino acid residue backbones. At such a resolution, only the position and orientation of secondary structure elements (SSEs) such as α-helices and β-sheets are observable. Consequently, finding the mapping of the secondary structures of the modeled structure (SSEs-A) to the cryo-EM map (SSEs-C) is one of the primary concerns in cryo-EM modeling. To address this issue, this study proposes a novel automatic computational method to identify SSEs correspondence in three-dimensional (3D) space. Initially, through a modeling of the target sequence with the aid of extracting highly reliable features from a generated 3D model and map, the SSEs matching problem is formulated as a 3D vector matching problem. Afterward, the 3D vector matching problem is transformed into a 3D graph matching problem. Finally, a similarity-based voting algorithm combined with the principle of least conflict (PLC) concept is developed to obtain the SSEs correspondence. To evaluate the accuracy of the method, a testing set of 25 experimental and simulated maps with a maximum of 65 SSEs is selected. Comparative studies are also conducted to demonstrate the superiority of the proposed method over some state-of-the-art techniques. The results demonstrate that the method is efficient, robust, and works well in the presence of errors in the predicted secondary structures of the cryo-EM images
    corecore