591 research outputs found

    SYM, Chern-Simons, Wess-Zumino Couplings and their higher derivative corrections in IIA Superstring theory

    Get PDF
    We find the entire form of the amplitude of two fermion strings (with different chirality), a massless scalar field and one closed string Ramond-Ramond (RR) in IIA superstring theory which is different from its IIB one. We make use of a very particular gauge fixing and explore several new couplings in IIA. All infinite uu- channel scalar poles and t,st,s- channel fermion poles are also constructed. We find new form of higher derivative corrections to two fermion two scalar couplings and show that the first simple (s+t+u)(s+t+u)- channel scalar pole for p+2=np+2=n case can be obtained by having new higher derivative corrections to SYM couplings at third order of α\alpha'. We find that the general structure and the coefficients of higher derivative corrections to two fermion two scalar couplings are completely different from the derived α\alpha' higher derivative corrections of type IIB.Comment: 29 pages, no figure,Latex file,published version in EPJ

    Aging and Holography

    Full text link
    Aging phenomena are examples of `non-equilibrium criticality' and can be exemplified by systems with Galilean and scaling symmetries but no time translation invariance. We realize aging holographically using a deformation of a non-relativistic version of gauge/gravity duality. Correlation functions of scalar operators are computed using holographic real-time techniques, and agree with field theory expectations. At least in this setup, general aging phenomena are reproduced holographically by complexifying the bulk space-time geometry, even in Lorentzian signature.Comment: 1 pdf figur

    Poincar\'e Invariant Quantum Field Theories With Twisted Internal Symmetries

    Full text link
    Following up the work of [1] on deformed algebras, we present a class of Poincar\'e invariant quantum field theories with particles having deformed internal symmetries. The twisted quantum fields discussed in this work satisfy commutation relations different from the usual bosonic/fermionic commutation relations. Such twisted fields by construction are nonlocal in nature. Despite this nonlocality we show that it is possible to construct local interaction Hamiltonians which satisfy cluster decomposition principle and are Lorentz invariant. We further illustrate these ideas by considering global SU(N) symmetries. Specifically we show that twisted internal symmetries can significantly simplify the discussion of the marginal deformations (\beta-deformations) of the N=4 SUSY theories.Comment: 27 pages, Typos Corrected, Text and Conclusions Unchanged, Version published in JHE

    On metric geometry of conformal moduli spaces of four-dimensional superconformal theories

    Full text link
    Conformal moduli spaces of four-dimensional superconformal theories obtained by deformations of a superpotential are considered. These spaces possess a natural metric (a Zamolodchikov metric). This metric is shown to be Kahler. The proof is based on superconformal Ward identities.Comment: 8 page

    Semiclassical strings in marginally deformed toric AdS/CFT

    Full text link
    We study string solutions in the beta-deformed Sasaki-Einstein gauge/gravity dualities. We find that the BPS point-like strings move in the submanifolds where the two U(1) circles shrink to zero size. In the corresponding T^3 fibration description, the strings live on the edges of the polyhedron, where the T^3 fibration degenerates to T^1. Moreover, we find that for each deformed Sasaki-Einstein manifold the BPS string solutions exist only for particular values of the deformation parameter. Our results imply that in the dual field theory the corresponding BPS operators exist only for these particular values of the deformation parameter we find. We also examine the non-BPS strings, derive their dispersion relations and compare them with the undeformed ones. Finally, we comment on the range of the validity of our solutions and their dependence on the deformation parameter.Comment: 29 pages, 9 figure

    Higher Spins in AdS and Twistorial Holography

    Get PDF
    In this paper we simplify and extend previous work on three-point functions in Vasiliev's higher spin gauge theory in AdS4. We work in a gauge in which the space-time dependence of Vasiliev's master fields is gauged away completely, leaving only the internal twistor-like variables. The correlation functions of boundary operators can be easily computed in this gauge. We find complete agreement of the tree level three point functions of higher spin currents in Vasiliev's theory with the conjectured dual free O(N) vector theory.Comment: 23 pages. v3: minor errors fixed, added comments and reference

    Glueball masses in the large N limit

    Full text link
    The lowest-lying glueball masses are computed in SU(NN) gauge theory on a spacetime lattice for constant value of the lattice spacing aa and for NN ranging from 3 to 8. The lattice spacing is fixed using the deconfinement temperature at temporal extension of the lattice NT=6N_T = 6. The calculation is conducted employing in each channel a variational ansatz performed on a large basis of operators that includes also torelon and (for the lightest states) scattering trial functions. This basis is constructed using an automatic algorithm that allows us to build operators of any size and shape in any irreducible representation of the cubic group. A good signal is extracted for the ground state and the first excitation in several symmetry channels. It is shown that all the observed states are well described by their large NN values, with modest O(1/N2){\cal O}(1/N^2) corrections. In addition spurious states are identified that couple to torelon and scattering operators. As a byproduct of our calculation, the critical couplings for the deconfinement phase transition for N=5 and N=7 and temporal extension of the lattice NT=6N_T=6 are determined.Comment: 1+36 pages, 22 tables, 21 figures. Typos corrected, conclusions unchanged, matches the published versio

    Supersymmetric sound in fluids

    Full text link
    We consider the hydrodynamics of supersymmetric fluids. Supersymmetry is broken spontaneously and the low energy spectrum includes a fermionic massless mode, the phonino\mathit{phonino}. We use two complementary approaches to describe the system: First, we construct a generating functional from which we derive the equations of motion of the fluid and of the phonino propagating through the fluid. We write the form of the leading corrections in the derivative expansion, and show that the so called diffusion terms in the supercurrent are in fact not dissipative. Second, we use an effective field theory approach which utilizes a non-linear realization of supersymmetry to analyze the interactions between phoninos and phonons, and demonstrate the conservation of entropy in ideal fluids. We comment on possible phenomenological consequences for gravitino physics in the early universe.Comment: Modified introduction and discussion of diffusion terms in the supercurren

    Semi-Holographic Fermi Liquids

    Full text link
    We show that the universal physics of recent holographic non-Fermi liquid models is captured by a semi-holographic description, in which a dynamical boundary field is coupled to a strongly coupled conformal sector having a gravity dual. This allows various generalizations, such as a dynamical exponent and lattice and impurity effects. We examine possible relevant deformations, including multi-trace terms and spin-orbit effects. We discuss the matching onto the UV theory of the earlier work, and an alternate description in which the boundary field is integrated out.Comment: 26 pages, 4 figures; v2: typos corrected and report number adde
    corecore