136 research outputs found

    Nonsymmetric Gravitational Theory

    Get PDF
    A new version of nonsymmetric gravitational theory is presented. The field equations are expanded about the Minkowski metric, giving in lowest order the linear Einstein field equations and massive Proca field equations for the antisymmetric field g[μν]g_{[\mu\nu]}. An expansion about an arbitrary Einstein background metric yields massive Proca field equations with couplings to only physical modes. It follows that the new version of NGT is free of ghost poles, tachyons and higher-order poles and there are no problems with asymptotic boundary conditions. A static spherically symmetric solution of the field equations in the short-range approximation is everywhere regular and does not contain a black hole event horizon.Comment: 11 pages plain TeX. TeX macrofile included. Corrections in formula

    LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG)

    Get PDF
    AbstractThe nature of gravitational waves in a generalized gravitation theory is investigated. The linearized field equations and the metric tensor quadrupole moment power and the decrease in radius of an inspiralling binary system of two compact objects are derived. The generalized Kerr metric describing a spinning black hole is determined by its mass M and the spin parameter a=cS/GM2. The LIGO-Virgo collaboration data is fitted with smaller binary black hole masses in agreement with the current electromagnetic, observed X-ray binary upper bound for a black hole mass, M≲10M⊙

    Ultraviolet Complete Electroweak Model Without a Higgs Particle

    Full text link
    An electroweak model with running coupling constants described by an energy dependent entire function is utraviolet complete and avoids unitarity violations for energies above 1 TeV. The action contains no physical scalar fields and no Higgs particle and the physical electroweak model fields are local and satisfy microcausality. The WW and ZZ masses are compatible with a symmetry breaking SU(2)L×U(1)Y→U(1)emSU(2)_L\times U(1)_Y \rightarrow U(1)_{\rm em}, which retains a massless photon. The vertex couplings possess an energy scale ΛW>1\Lambda_W > 1 TeV predicting scattering amplitudes that can be tested at the LHC.Comment: 19 pages, no figures, LaTex file. Equation and text corrected. Reference added. Results remain the same. Final version published in European Physics Journal Plus, 126 (2011

    Resolving Curvature Singularities in Holomorphic Gravity

    Get PDF
    We formulate holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature singularity. Likewise, typical observers do not experience Big Bang singularity. Unlike Hermitian gravity \cite{MantzHermitianGravity}, Holomorphic gravity does not respect the reciprocity symmetry and thus it is mainly a toy model for a gravity theory formulated on complex space-times. Yet it is a model that deserves a closer investigation since in many aspects it resembles Hermitian gravity and yet calculations are simpler. We have indications that holomorphic gravity reduces to the laws of general relativity correctly at large distance scales.Comment: 14 pages, 7 figure

    Nonholonomic Ricci Flows, Exact Solutions in Gravity, and Symmetric and Nonsymmetric Metrics

    Full text link
    We provide a proof that nonholonomically constrained Ricci flows of (pseudo) Riemannian metrics positively result into nonsymmetric metrics (as explicit examples, we consider flows of some physically valuable exact solutions in general relativity). There are constructed and analyzed three classes of solutions of Ricci flow evolution equations defining nonholonomic deformations of Taub NUT, Schwarzschild, solitonic and pp--wave symmetric metrics into nonsymmetric ones.Comment: latex2e, 12pt, 40 pages, version 2 with minor modifications, to be published in Int. J. Theor. Phy
    • …
    corecore