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The nature of gravitational waves in a generalized gravitation theory is investigated. The linearized 
field equations and the metric tensor quadrupole moment power and the decrease in radius of an 
inspiralling binary system of two compact objects are derived. The generalized Kerr metric describing 
a spinning black hole is determined by its mass M and the spin parameter a = cS/G M2. The LIGO-
Virgo collaboration data is fitted with smaller binary black hole masses in agreement with the current 
electromagnetic, observed X-ray binary upper bound for a black hole mass, M � 10M� .
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1. Introduction

A century after the fundamental prediction by Einstein, based 
on his gravitational field equations [1] of gravitational waves [2,3], 
and Schwarzschild’s derivation of his solution to the general rel-
ativity (GR) field equations [4], which led to the prediction of 
black holes, the first direct detections of gravitational waves has 
been reported [5,6]. The gravitational waves are produced by the 
merging of a binary black hole system to form a single black 
hole. The measurements lead to a new access to the physi-
cal properties of spacetime and strong field gravity. The obser-
vations of the energy loss by Taylor and Weisberg [7], follow-
ing the discovery of the binary pulsar system PSR B1913+16 by 
Taylor and Hulse [8] demonstrated the existence of gravitational 
waves.

In the following, we will investigate the nature of gravitational 
waves in a generalized gravitation theory called Scalar–Tensor–
Vector–Gravity (STVG), also known in the literature as MOG (mod-
ified gravity) [9]. The theory has been studied as an alternative 
to GR without (detectable) dark matter in the present universe, 
and fits to galaxy rotation curves and galaxy clusters have been 
obtained [10–12]. Moreover, the theory has been applied to cos-
mology with an explanation for the growth of structure in the 
early universe and fits have been obtained to the CMB data [14,
15]. In the early universe cosmology, the mass of the vector field 
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φμ is mφ � 10−22 eV and acts as a cold dark matter particle 
with density ρφ > ρb , where ρφ and ρb denote the density of 
the boson particle and baryons, respectively. As the universe ex-
pands and enters the era of the formation of stars and galaxies 
the effective boson mass decreases to the value mφ ∼ 10−28 eV, 
and due to the weak gravitational coupling of the particle to or-
dinary matter the particle will be unobservable in the late-time 
universe.

An alternative early universe cosmology without dark matter is 
formulated in [16].

In our generalized gravitational theory electromagnetic waves 
(photons) and gravitational waves (gravitons) move with the speed 
of light. The null geodesic equation for photon paths is determined 
in a Jordan frame conformal metric, and in the Einstein frame met-
ric the gravitational constant for photon paths is screened, yielding 
the deflection of light by the Sun, and the Shapiro time delay in 
agreement with GR. The enhanced gravitational interaction expe-
rienced by photons in the lensing of galaxies and galactic clusters 
leads to an explanation of gravitational lensing data without dark 
matter [13].

The paper is organized, as follows. In Section 2, we present the 
STVG field equations, while in Section 3, we investigate the lin-
earized weak field approximation of the field equations, the mod-
ified two-body acceleration law and the tensor gravitational wave 
equations for a binary system. Section 4, presents the generalized 
Kerr solution of the gravielectric vacuum STVG field equations, 
while in Section 5, we investigate the inspiralling merger of two 
black holes and the LIGOGW150914 and GW151226 detections of 
gravitational waves. In Section 5, we discuss the measurements of 
black hole masses, and we end with conclusions in Section 6.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Scalar–tensor–vector gravity

We adopt the metric signature (+, −, −, −) and choose units 
with c = 1. The MOG theory has a fully covariant action composed 
of scalar, vector and tensor fields [9]:

S = SG + Sφ + S S + SM . (1)

The components of the action are the Einstein gravity action:

SG = 1

16π

∫
d4x

√−g
[ 1

G
(R + 2�)

]
, (2)

and the massive vector field φμ action:

Sφ = −
∫

d4x
√−g

[1

4
Bμν Bμν − V (φμ)

]
, (3)

where Bμν = ∂μφν − ∂νφμ and V (φμ) denotes a potential for φμ . 
The action for the scalar fields G and μ is

S S =
∫

d4x
√−g

[ 1

G3

(1

2
gμν∇μG∇νG − V (G)

)

+ 1

μ2G

(1

2
gμν∇μμ∇νμ − V (μ)

)]
. (4)

Here, ∇μ denotes the covariant derivative with respect to the met-
ric gμν , V (G) and V (μ) denote potentials for the fields G and μ, 
respectively. The energy–momentum tensor is defined as

T Xμν = − 2√−g

δS X

δgμν
(X = [M, φ, S]). (5)

The STVG field equations are given by [9]:

Gμν − �gμν + Q μν = −8πGTμν, (6)

∇ν Bμν + ∂V (φ)

∂φμ
= − Jμ, (7)

∇σ Bμν + ∇ν Bσμ + ∇σ Bνμ = 0, (8)

�G = K (x), (9)

�μ = L(x). (10)

We have

Q μν = 2

G2
(∇αG∇αGgμν − ∇μG∇νG)

− 1

G
(�Ggμν − ∇μ∇νG). (11)

Moreover,

K (x) =
(

16π

3 + 16π

)[
3

8πG
(1 + 4π)∇αG∇αG − G

2μ2
�μ

+ 1

2
G2

(
T + �

4πG

)
+ 1√

αG N
T Mμνuνφμ

]
, (12)

and

L(x) = 1

G
∇αG∇αμ + 2

μ
∇αμ∇αμ + μ2G

∂V (φμ)

∂μ
. (13)

Gμν is the Einstein tensor Gμν = Rμν − 1
2 gμν R , � is the cosmo-

logical constant, � = ∇μ∇μ , T = gμν Tμν and G and μ are scalar 
fields. The Ricci curvature tensor is defined by

Rμν = ∂ν�μσ
σ − ∂σ �μν

σ + �α
μσ �σ

αν − �α
μν�σ

ασ . (14)
The potential V (φμ) for the vector field φμ is given by1

V (φμ) = −1

2
μ2φμφμ. (15)

The total energy–momentum tensor is defined by

Tμν = T M
μν + T φ

μν + T G
μν + T μ

μν, (16)

where T M
μν is the energy–momentum tensor for the ordinary mat-

ter, and

T φ
μν = − 1

4π

[
Bμ

α Bνα − gμν

(
1

4
Bρα Bρα + V (φμ)

)

+ 2
∂V (φμ)

∂ gμν

]
, (17)

T G
μν = − 1

4πG3

(
∇μG∇ν G − 1

2
gμν∇αG∇αG

)
, (18)

T μ
μν = − 1

4πGμ2

(
∇μμ∇νμ − 1

2
gμν∇αμ∇αμ

)
. (19)

The covariant current density Jμ for matter is defined by

Jμ = κT Mμνuν, (20)

where κ = √
αG N , α = (G − G N )/G N is a dimensionless scalar 

field, G N is Newton’s constant, uμ = dxμ/ds and s is the proper 
time along a particle trajectory. The perfect fluid energy–
momentum tensor for matter is given by

T Mμν = (ρM + pM)uμuν − pM gμν, (21)

where ρM and pM are the density and pressure of matter, respec-
tively, and for the fluid uμ is the comoving four-velocity. We get 
from (20) and (21) by using uνuν = 1:

Jμ = κρM uμ. (22)

The gravitational source charge is given by

Q = κ

∫
d3x J 0(x). (23)

From (7) and (15) we get

∇μ Jμ = μ2∇μφμ. (24)

By requiring the condition ∇μφμ = 0, we obtain

∇μ Jμ = 0. (25)

The total density is given by

ρ = ρM + ρG + ρφ + ρμ. (26)

3. Weak field approximation, modified acceleration law and 
gravitational waves

The weak field approximation is based on a perturbation about 
the Minkowski metric ημν :

gμν = ημν + λhμν, (27)

where we have set λ = √
16πG and the condition gμν gμρ = δν

ρ

requires that gμν = ημν − λhμν .
The test particle equation of motion is given by

1 The scalar field ω(x) introduced in the original STVG paper is taken to be con-
stant and ω = 1.
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d2xμ

ds2
+ �μ

αβ

dxα

ds

dxβ

ds
= q

m
Bμ

ν
dxν

ds
, (28)

where m and q = √
αG Nm are the test particle mass and gravita-

tional charge, respectively, and φμ = (φ0, φi) (i = 1, 2, 3). Note that 
q/m = √

αG N , so that the inertial mass m of the test particle can-
cels in the equation of motion (28), so that the theory satisfies the 
(weak) equivalence principle for homogeneous gravitational fields.

Assuming that V (φμ) is given by (15) and ∂νφν = 0, the weak 
field spherically symmetric static, point particle solution for φ0(r)
is obtained from the equation (φ′

0 = dφ0/dr):

φ′′
0 + 2

r
φ′

0 − μ2φ0 = 0, (29)

where μ is the mass of the vector field φμ . The solution is given 
by

φ0(r) = −Q
exp(−μr)

r
, (30)

where the gravitational charge Q = √
αG N M and M is the mass of 

the source particle.
In the slow motion and weak field approximation, dr/ds ∼ dr/dt

and 2GM/r � 1, and for the radial acceleration of the test particle 
we get [9]:

d2r

dt2
+ GM

r2
= qQ

m

exp(−μr)

r2
(1 + μr). (31)

For qQ /m = αG N M and G = G N (1 + α), the modified Newtonian 
acceleration law for a point particle is given by

a(r) = − G N M

r2
[1 + α − α exp(−μr)(1 + μr)]. (32)

We can rewrite this modified acceleration equation as

a(r) = −G(r)M

r2
, (33)

where the effective gravitational coupling strength is given by

G(r) = G N [1 + α − α exp(−μr)(1 + μr)]. (34)

For a continuous distribution of matter we get

a(x) = −G N

∫
d3x′ ρ(x′)(x − x′)

|x − x′|3
× [1 + α − α exp(−μ|x − x′|)(1 + μ|x − x′|)]. (35)

For a given density ρ(x) the potential is

�(x) = −G N

∫
d3x′ ρ(x′)

|x − x′|
[

1 + α − α exp(−μ|x − x′|)
]
. (36)

We can write the MOG acceleration law for a continuous distribu-
tion of matter as

a(x) = −
∫

d3x′ G(x − x′)ρ(x′)(x − x′)
|x − x′|3 , (37)

where

G(x − x′) = G N [1 + α − α exp(−μ|x − x′|)(1 + μ|x − x′|)]. (38)

We define the field variable:

γ μν = hμν − 1

2
ημνh, (39)

where h = ημνhμν = hμ
μ . The linearized metric field equations 

become:
�γ μν = −λT Mμν, (40)

where � = ∂α∂α , we have dropped the cosmological constant �, 
and we have adopted the condition:

∂νγ
μν = 0. (41)

The linearized field equations for G and μ are given by

1

G
�G = 8πG

3 + 16π
T M , (42)

and

�μ = 0. (43)

The retarded solution of (40) is

γ μν(x, t) = − λ

4π

∫
d3x′ T Mμν(t − |x − x′|,x′)

|x − x′| . (44)

We have restricted the energy–momentum tensor to the matter 
tensor T Mμν which satisfies the conservation law:

∂ν T Mμν = 0. (45)

In the radiation zone, far away from the matter system, we can 
replace |x − x′| by |x| to give

γ μν(x, t) = − λ

4πr

∫
d3x′T Mμν(t − r,x′), (46)

where r = |x|. For the calculation of the gravitational energy flux, 
we can in the radiation zone regard γ μν as a plane wave with 
only two transverse polarizations. Then, we have that

γ kl(x, t) = − λ

24πr
Q̈ kl, (47)

where the dots stand for time derivatives, k, l = 1, 2, 3 and the 
right-hand side is to be evaluated at the retarded time t − r. The 
total power of tensor gravitational wave energy in the generalized 
theory is

P = G
45c5

...
Q kl

...
Q kl, (48)

where Q kl is the quadrupole moment:

Q kl =
∫

d3x′
(

3x′
kx′

l − r′ 2δkl

)
ρM(x′). (49)

The gravitational waves are a result of the accelerated motion of 
masses, so for weak gravitational fields we use the modified ef-
fective acceleration law (33). We have replaced in (48) the gravi-
tational coupling strength G by the effective gravitational coupling 
G in (34), in order to account for the repulsive effect of the vector 
field φμ on the accelerated motion of a massive source. An anal-
ysis of the field equations (7) and (8) for weak gravitational fields 
reveals that the vector field φμ does not produce dipole radia-
tion, because Q = √

αG N M > 0 and due to the conservation of the 
gravitational source charge, Q̇ = 0 (Ṁ = 0), there is no monopole 
radiation.

For two particles or two spherical masses moving in ellipti-
cal orbits about their common center-of-mass, the time-averaged 
power radiated by the system is [17,18]:

〈P 〉 ≡
〈

dE

dt

〉

= 32 G4

5

(m1m2)
2(m1 + m2)

5 2 7/2

(
1 + 73

e2 + 37
e4

)
, (50)
5 5c a (1 − e ) 24 96
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where m1, m2 are the masses, a is the semi-major axis, e is the 
eccentricity. We have used the generalized Kepler’s third law for 
the orbital angular velocity:

ω = [G(R)(m1 + m2)a(1 − e2)]1/2

R2
, (51)

where R is the distance between the binary components.
We have G(R) → G N for r = R � μ−1, where μ−1 ∼ 24 kpc

from the fits to galaxy rotation curves and cluster dynamics [10,
11]. Thus, for well-separated orbiting compact bodies, the time-
averaged tensor gravitational wave emission power is given by

〈P 〉 ≡
〈

dE

dt

〉

= 32

5

G4
N

5c5

(m1m2)
2(m1 + m2)

a5(1 − e2)7/2

(
1 + 73

24
e2 + 37

96
e4

)
. (52)

As the binary system loses energy by gravitational radiation, the 
orbital period Pb of a binary system of compact objects decreases 
as

Ṗb = −192πG5/3
N

5c5

(
Pb

2π

)−5/3

(1 − e2)−7/2

×
(

1 + 73

24
e2 + 37

96
e4

)
m1m2(m1 + m2)

−1/3. (53)

The PPN formalism determined by expansions in v/c yields correc-
tions to the gravitational radiation formulas [19]. The binary pulsar 
PSR B1913+16 data agree with the GR prediction of Ṗb to within 
∼ 0.2%. For the most relativistic binary systems the observed rate 
of change of the period agrees with GR to better than 0.03%.

4. Generalized Kerr black hole solution

An exact generalized Kerr solution of the STVG field equations 
has been derived [20–22]. The field equations for the special case 
G ∼ constant and Q = √

αG N M ∼ constant, ignoring in the present 
universe the small φμ field mass mφ ∼ 10−28 eV, are given by

Rμν = −8πGT φ
μν, (54)

∇ν Bμν = 1√−g
∂ν(

√−g Bμν) = 0, (55)

∇σ Bμν + ∇μBνσ + ∇ν Bσμ = 0. (56)

The energy–momentum tensor T φ
μ

ν
is

T φ
μ

ν = − 1

4π
(Bμα Bνα − 1

4
δμ

ν Bαβ Bαβ). (57)

The generalized Kerr black hole solution metric is given by

ds2 = �

ρ2
(dt − a sin2 θdφ)2 − sin2 θ

ρ2
[(r2 + a2)dφ − adt]2

− ρ2

�
dr2 − ρ2dθ2, (58)

where

� = r2 − 2GMr + a2 + α(1 + α)G2
N M2,

ρ2 = r2 + a2 cos2 θ. (59)

The spacetime geometry is axially symmetric around the z axis. 
Horizons are determined by the roots of � = 0:

r± = G N(1 + α)M

[
1 ±

√
1 − a2

G2 (1 + α)2M2
− α

1 + α

]
. (60)
N

An ergosphere horizon is determined by g00 = 0:

rE = G N(1 + α)M

[
1 +

√
1 − a2 cos2 θ

G2
N(1 + α)2M2

− α

1 + α

]
. (61)

The solution is fully determined by the Arnowitt–Deser–Misner 
(ADM) mass M and spin parameter a (a = cS/GM2 where S de-
notes the spin-angular momentum) measured by an asymptotically 
distant observer. When a = 0 the solution reduces to the general-
ized Schwarzschild black hole metric solution:

ds2 =
(

1 − 2G N(1 + α)M

r
+ α(1 + α)G2

N M2

r2

)
dt2

−
(

1 − 2G N(1 + α)M

r
+ α(1 + α)G2

N M2

r2

)−1

dr2

− r2d�2. (62)

When the parameter α = 0 the generalized solutions reduce to the 
GR Kerr and Schwarzschild black hole solutions. Both the general-
ized Kerr black hole and static spherically symmetric black hole 
solutions are algebraically equivalent to the Kerr–Newman and 
Reissner–Norström black hole solutions [20–22].

5. Black hole binary and LIGO gravitational wave detection

The recent detection of a gravitational wave from the inspiral 
of binary black hole systems [5,6] opens a new era in observa-
tional astronomy. The existence of gravitational waves was inferred 
from observations of binary pulsar systems [7,8]. For the first time 
the direct detection of gravitational waves has made it possible to 
observe a black hole–black hole (BH–BH) merger and infer its pa-
rameters independently of electromagnetic observations. This pro-
vides an unprecedented opportunity to study two-body motion of 
a compact-object binary in the large velocity, strong gravitational 
nonlinear regime. We can witness the final merger of the BH–
BH system and determine whether the GW150914 and GW151226 
events are consistent with the binary black hole solution in GR. 
A study of this problem has been carried out [23] and it was 
claimed that the GW150914 data is consistent with GR. They found 
that the final remnant black hole mass and spin, determined from 
the inspiral and coalescent phases of the detected signal are com-
patible with the GR solution.

The GW150914 source lies at a luminosity distance of
410+160

−180 Mpc corresponding to a redshift z = 0.09+0.03
−0.04. The in-

ferred initial black hole masses are m1 = 36+5
−4 M� and m2 =

29+4
−4 M� , the final black hole mass is M = 62+4

−4 M� , with

3.0+0.5
−0.5 M�c2 energy radiated away in gravitational waves, and the 

final black hole spin inferred from GR is a = 0.67+0.05
−0.07. The grav-

itational wave luminosity determined from GR reached a peak 
value of 3.6+0.5

−0.4 × 1056 erg/s equivalent to 200+30
−20 M�c2/s. The 

GW151226 source lies at a luminosity distance 440+180
−190 Mpc cor-

responding to a redshift z = 0.09+0.03
−0.04. The inferred masses are 

m1 = 14.2+8.3
−3.7 and m2 = 7.5+2.3

−2.3 and the final black hole mass 
is M = 20.8+6.1

−1.7. The gravitational wave detection events point to 
them being produced by the coalescence of two black holes – their 
orbital inspiral and merger and final black hole ringdown. Dur-
ing the period of 0.2 s, the GW150914 detected signal increases in 
frequency and amplitude from about 8 cycles from 35 Hz to a max-
imum 150 Hz. The merging of the black holes requires a numerical 
solution of the GR field equations. This has been accomplished for 
GR [24–26] and solutions have been derived that can match the 
gravitational wave form signals. Future work will require that nu-
merical solutions to the generalized gravitational field equations 
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be obtained, leading to the accurate determination of gravitational 
wave forms.

In our gravity theory and in GR, there are two independent 
gravitational wave polarization strains, h+(t) and h×(t). The polar-
ization strains during the inspiral of the black holes can be written 
as [27]:

h+(t) = AGW (t)(1 + cos2 ι) cos(φGW (t)), (63)

h×(t) = −2AGW (t) cos ι sin(φGW (t)), (64)

where AGW (t) and φGW (t) denote the amplitude and phase, re-
spectively, and ι is the inclination angle. Post-Newtonian theory is 
used to compute φGW (t, m1,2, S1,2) where S1 and S2 denote the 
black hole spins, and the perturbative expansion is in powers of 
v/c ∼ 0.2–0.5. A description of the gravitational wave phase is

φGW(t) ∼ 2π

(
f t + 1

2
ḟ t2

)
+ φ0, (65)

where f is the gravitational wave frequency. The strain h+(t) can 
be expressed in the generalized theory as a rough estimate:

h+(t) ∼ G2(R)m1m2

D R(t)c4
(1 + cos2 ι) cos

( t∫
f (t′)dt′

)
, (66)

where D is the distance to the binary system source, G(R) is the 
effective gravitational strength (34) and R(t) is the radial distance 
of closest approach during the inspiraling merger. We have

f (t) = 53/8

8π

(
c3

GMc

)5/8

(tcoal − t)−3/8, (67)

where Mc is the chirp mass:

Mc = (m1m2)
3/5

(m1 + m2)1/5
= c3

G

[
5

96
π−8/3 f −11/3 ḟ

]3/5

. (68)

The characteristic evolution time at the frequency f is

tevol ≡ f

ḟ
= 8

3
(tcoal − t) = 5

96π8/3

c5

f 8/3(GMc)5/3
, (69)

and the chirp ḟ is given by [28,29]:

ḟ = 96

5

c3 f

GMc

(
π f

c3
GMc

)8/3

. (70)

Observed black holes come in two classes: the supermassive 
black holes at the centers of galaxies and stellar-size black holes. 
The former are in the mass range 105 M�–1010 M� , while the lat-
ter are in the mass range 2.5–10M� . The fact that the black hole 
masses inferred from the GW150914 signal strength have the val-
ues m1 ∼ 36M� and m2 ∼ 29M� leads to the problem of how such 
massive, intermediate black hole binaries could be formed. The 
mass wind and metallicity Z of progenitor stars generally conspire 
to lead through collapse to black holes with the mass � 10M� .

In our generalized gravitation theory, we can produce a solution 
to this black hole evolution problem. For initial well-separated bi-
nary black holes in the weak gravitational field regime, G(R) ∼ G N
according to the effective gravitational field strength (34) for R �
μ−1 ∼ 24 kpc (determined by fits to galaxy rotation curves and 
cluster dynamics [10,11]). As the two black holes, described by the 
Kerr–MOG and Schwarzschild–MOG solutions, coalesce and merge 
to the final black hole with G ∼ G N (1 + α), we can choose the pa-
rameter α in a range of values of order unity.

As the two black holes merge the masses, the gravitational 
charges and the spins also merge to their final values for the qui-
escent black hole after the ringdown phase. During this stage the 
Table 1
Summary of values of α, m1, m2 and chirp mass Mc for BH–BH binary systems and 
the GW LIGO events GW 150914 and GW 152612.

Merging systems α m1(M�) m2(M�) Mc(M�)

GR GW150914 0 36 29 28
GR GW151226 0 14 8 8.9
MOG GW150914 2.6 10 8 7.8
MOG GW151226 2.0 4.7 3 3
MOG GW150914 5.7 6 4 4.2
MOG GW150914 8.3 4 3 3

repulsive force exerted on the two black holes, due to the vec-
tor field charges Q 1 = κm1 and Q 2 = κm2, decreases to zero and 
G = G N (1 +α) and Q = κM where α and M are the final values of 
the quiescent black hole mass and α. During the rapid coalescing 
strong gravity phase, the repulsive vector force only partially can-
cels the attractive force and α and G ∼ G N (1 + α). In this merging 
phase, we have G ∼ G N (1 + α) and we obtain

h+(t) ∼ G2
N(1 + α)2m1m2

D R(t)c4
(1 + cos2 ι) cos

( t∫
f (t′)dt′

)
, (71)

Mc = (m1m2)
3/5

(m1 + m2)1/5
= c3

G N(1 + α)

[
5

96
π−8/3 f −11/3 ḟ

]3/5

, (72)

ḟ = 96

5

c3 f

G N(1 + α)Mc

(
π f

c3
G N(1 + α)Mc

)8/3

. (73)

The increase of G in the final stage of the merging of the black 
holes can lead to a fitting of the LIGO data for binary black holes 
in agreement with the observed values of stellar-mass binary black 
holes. We have for the GR chirp mass using m1 = 36M� and m2 =
29M� the value McGR = 28.0M� , and from G N (1 + α)McMOG =
G NMcGR we get

α = McGR −McMOG

McMOG
. (74)

Estimating f , h+ and ḟ from the LIGO data, we obtain in Ta-
ble 1 the values for α for different BH–BH component masses. 
In the detector frame the total mass is MGR and MMOG, less the 
mass lost by gravitational radiation. The bounds on the sum of 
the Schwarzschild radii of the black hole binary components are 
rsGR = 2G N MGR and rsMOG = 2G N (1 + α)MMOG. To reach an orbital 
frequency 75 Hz that is half the gravitational wave frequency the 
orbiting black holes were very close Newtonian point masses only 
� 350 km apart.

The initial orbiting black holes are well-separated in distance 
from one another, so the weak gravitational wave power emission 
is given by (52) with the appropriate PPN corrections included. The 
GR and MOG masses m1 and m2 of the two black holes are given 
in Table 1, and in this initial phase of the slowly inspiralling black 
holes no gravitational wave signal will be detected. In the final 
merging stage of the black holes the value of G ∼ G N , obtained 
from the weak gravitational and slow velocity formula (34) is no 
longer valid for strong gravitational fields. Thus, with α > 0, we 
can fit the audible chirp signal LIGO data with smaller values for 
m1 and m2. As the black holes coalesce, the final quiescent MOG 
black hole will have a total mass M = m1 + m2, less the amount 
of mass-energy emitted by gravitational wave emission, and it will 
be described by the Kerr–MOG metric (58).

The GW150914 observed spin is determined by the effective 
spin parameter:

χeff = c
(

S1 + S2
)

· L̂ = m1a1 + m2a2 · L̂, (75)

GM m1 m2 m1 + m2
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where a1 and a2 are the dimensionless vector component spin pa-
rameters and L̂ is the direction of orbital angular momentum. The 
observed value is χeff = −0.06+0.17±0.01

−0.18±0.07 [27]. The low value of the 
spin parameter χeff has been found to be in tension with stellar 
astrophysics and progenitor models of black hole formation [30]. 
For the MOG black hole a = cS/G N (1 + α)M2, so for α > 0 the de-
crease in the magnitude of a compared to the GR prediction can 
bring the value of χeff closer to its low observed value for models 
of binary black hole formation.

6. Conclusions

Black holes play an important role in astrophysical phenom-
ena, ranging from binaries to ultra-luminous X-ray sources (ULXs), 
galaxies and quasars. Stellar-mass black holes offer us the best 
opportunity to investigate these objects in detail. The relative near-
ness and time-scale variability allow us to study their electromag-
netic properties through their accretion regimes. Accurate determi-
nations of black hole masses is critical to test models of massive 
progenitors. Although solitary black holes do not emit electromag-
netic radiation, they become detectable X-ray sources when they 
have a stellar companion transferring matter to them. The robust 
method of measuring stellar masses uses Kepler’s third law of mo-
tion. This determines the orbital period and the radial velocity 
semi-amplitude of the companion star. These two quantities com-
bine to determine the mass function equation [31,32]:

f (M) = K 3
c Porb

2πG N
= M3

x sin3 ι

(Mx + Mc)2
= Mx sin3 ι

(1 + qb)
2
, (76)

where Porb denotes the orbital period, Mx the black hole mass, 
Mc the mass of the companion star, Kc the radial velocity semi-
amplitude of the companion star, ι the inclination angle and qb =
Mc/Mx the binary mass ratio. Observed stellar black hole masses 
range from 3M� to 15M� . The formation of the black holes fol-
lows an evolutionary process depending on the initial mass of the 
progenitor, how much mass is lost during its evolution and on the 
supernova explosion mechanism. Mass is lost through stellar winds 
and the amount lost depends on the metallicity of the progenitor 
star. For a star of low metallicity ∼ 0.01 of the solar metallicity, it 
is possible to end up with a black hole of � 100M� , although there 
is no direct observational evidence available at present to support 
this. It is also conjectured that more massive black holes can be 
produced in the dense stellar populations of globular clusters.

The system M33 X-7 harbors the heaviest star ever discovered 
in an X-ray binary orbiting the most massive black hole found in 
one of these systems. A 70M� star orbits a ∼ 15M� black hole ev-
ery 3.45 days [33,34]. The tight orbit and the massive components 
make M33 X-7 an evolutionary challenge. Finding a plausible evo-
lutionary model has been complicated by the low luminosity of 
the stellar component – lower than is predicted for a single star of 
mass 70M� .

Until observations confirm the existence of stellar black holes 
with a mass 36M� and 18M� [35,36], we can consider that the 
generalized gravitation theory fitting of the GW150914 data with 
black hole masses � 10M� to be a challenge for the future test-
ing of the strong gravity regime of black holes. In particular, fur-
ther research on the evolution of black hole binaries is needed 
to determine whether the evolution can support a binary stellar 
mass black hole with M ∼ 36M� . It has been conjectured that 
primordeal black holes could be produced in the early universe 
with mass > 10M� . However, such primordeal black holes have 
not been observed.

The role of gravitational waves in a modified gravitational the-
ory has been investigated, and the radiated gravitational wave 
power has been derived. It is argued from the motion of com-
pact bodies in the weak field (2GM/c2r � 1) and slow motion 
approximation that the repulsive force due to the vector field po-
tential cancels the enhanced gravitational force between compact 
bodies, yielding the Newtonian acceleration law G N M/r2 together 
with PPN corrections and agreement with binary pulsar observa-
tional data. The photon propagates through a conformal metric 
along a null geodesic path and is screened for dense bodies such 
as the sun, yielding agreement with the solar system bending of 
light and Cassini probe experiments [13]. The speed of electromag-
netic waves (massless photons) and gravitational waves (massless 
gravitons) is the speed of light. For weak gravitational fields the 
tensor radiated power reduces to the GR result for well-separated 
binary particles in agreement with the experimental results for bi-
nary pulsars.

The generalized gravitational theory is applied to the gravita-
tional wave detections by LIGO [5,6]. The field equations are re-
stricted to the special case when G = G N (1 + α) ∼ constant and 
the small vector particle mass mφ is neglected. We choose for 
the initial inspiralling phase of the black hole merger with well-
separated point mass particles, two black hole component masses 
m1, m2 ≤ 10M� , and the effective coupling strength G ∼ G N . As 
the two black holes merge, the weak field approximation is no 
longer valid and for the strong gravitational field, coalescing phase 
G ∼ G N (1 + α). To fit the LIGO signal data, we can choose a 
range of values of the parameter α. For the modified gravity 
G N (1 + α)McMOG = G NMcGR, and values of the chirp mass and 
the frequency f and its time derivative ḟ are obtained from fits 
to the merging black hole LIGO signal data. This allows for a fit to 
the LIGO wave form signal data. After the ringdown phase, when 
the merger end-product relaxes to the final stationary, equilibrium 
MOG black hole, it will be described by the Kerr–MOG black hole 
solution that only depends on its final mass and spin.

It is argued that measurements of black hole masses by obser-
vations of X-ray binaries give masses � 10M� , and not the masses 
m1 = 36M� , m2 = 29M� and m1 = 14M� and m2 = 7.5M� (the 
mass m2 is consistent with observed binary stellar black hole 
masses) inferred from the LIGO signals assuming the validity of 
GR. The observed upper bound M ∼ 10M� on binary black holes 
masses is in accord with the evolutionary formation models of 
black holes and collapse models based on supernova explosions. 
Thus, the generalized gravity results we have obtained for the 
black hole masses are more in agreement with the observational 
data and theoretical model calculations currently available for the 
masses of stellar mass black holes than the inferred masses de-
rived from GR and the LIGO data. A full numerical calculation of 
the STVG field equations is required to obtain an accurate deriva-
tion of the final strong field merging of the MOG black holes and 
the wave forms that fit the LIGO-Virgo signal data.

Another important prediction of our modified gravitational the-
ory is the size of the black hole shadow predicted by MOG com-
pared to that predicted by GR [21,37]. The event horizon telescope 
(EHT) will be able to determine the size of the shadow cast by 
photons trapped by the strong gravitational field of the supermas-
sive black hole Sagittarius A* (Sgr A*) with an error of about 5%, 
or an angular radius error of 1.5 μas. The predicted size of the 
shadow for the Schwarzschild–MOG and Kerr–MOG black holes 
can determine a bound on α for Sgr A*. For a Schwarzschild–MOG 
black hole an approximate formula for the size of the shadow is

rshad ∼ (5.18 + 4α)rg, (77)

where rg = G N M/c2 and M = 4.23 × 106M� . The angular radius 
R = rshad/D where D = 8.3 kpc is R ∼ 26 μas for α = 0 and 
R ∼ 46 μas for α = 1. This generalized gravity prediction of the 
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size of the Sgr A* black hole shadow in conjunction with bounds 
on α obtained from future gravitational wave experimental results 
can distinguish for strong gravitational fields our generalized grav-
itational theory from general relativity.
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