7,255 research outputs found

    Central limit theorem for fluctuations in the high temperature region of the Sherrington-Kirkpatrick spin glass model

    Get PDF
    In a region above the Almeida-Thouless line, where we are able to control the thermodynamic limit of the Sherrington-Kirkpatrick model and to prove replica symmetry, we show that the fluctuations of the overlaps and of the free energy are Gaussian, on the scale N^{-1/2}, for N large. The method we employ is based on the idea, we recently developed, of introducing quadratic coupling between two replicas. The proof makes use of the cavity equations and of concentration of measure inequalities for the free energy.Comment: 18 page

    The Boltzmann Equation in Scalar Field Theory

    Get PDF
    We derive the classical transport equation, in scalar field theory with a V(phi) interaction, from the equation of motion for the quantum field. We obtain a very simple, but iterative, expression for the effective action which generates all the n-point Green functions in the high-temperature limit. An explicit closed form is given in the static case.Comment: 10 pages, using RevTeX (corrected TeX misprints

    Interpolating the Sherrington-Kirkpatrick replica trick

    Full text link
    The interpolation techniques have become, in the past decades, a powerful approach to lighten several properties of spin glasses within a simple mathematical framework. Intrinsically, for their construction, these schemes were naturally implemented into the cavity field technique, or its variants as the stochastic stability or the random overlap structures. However the first and most famous approach to mean field statistical mechanics with quenched disorder is the replica trick. Among the models where these methods have been used (namely, dealing with frustration and complexity), probably the best known is the Sherrington-Kirkpatrick spin glass: In this paper we are pleased to apply the interpolation scheme to the replica trick framework and test it directly to the cited paradigmatic model: interestingly this allows to obtain easily the replica-symmetric control and, synergically with the broken replica bounds, a description of the full RSB scenario, both coupled with several minor theorems. Furthermore, by treating the amount of replicas n∈(0,1]n\in(0,1] as an interpolating parameter (far from its original interpretation) this can be though of as a quenching temperature close to the one introduce in off-equilibrium approaches and, within this viewpoint, the proof of the attended commutativity of the zero replica and the infinite volume limits can be obtained.Comment: This article is dedicated to David Sherrington on the occasion of his seventieth birthda

    Mean field dilute ferromagnet I. High temperature and zero temperature behavior

    Full text link
    We study the mean field dilute model of a ferromagnet. We find and prove an expression for the free energy density at high temperature, and at temperature zero. We find the critical line of the model, separating the phase with zero magnetization from the phase with symmetry breaking. We also compute exactly the entropy at temperature zero, which is strictly positive. The physical behavior at temperature zero is very interesting and related to infinite dimensional percolation, and suggests possible behaviors at generic low temperatures. Lastly, we provide a complete solution for the annealed model. Our results hold both for the Poisson and the Bernoulli versions of the model.Comment: 38 page

    A note on the Guerra and Talagrand theorems for Mean Field Spin Glasses: the simple case of spherical models

    Full text link
    The aim of this paper is to discuss the main ideas of the Talagrand proof of the Parisi Ansatz for the free-energy of Mean Field Spin Glasses with a physicist's approach. We consider the case of the spherical pp-spin model, which has the following advantages: 1) the Parisi Ansatz takes the simple ``one step replica symmetry breaking form'', 2) the replica free-energy as a function of the order parameters is simple enough to allow for numerical maximization with arbitrary precision. We present the essential ideas of the proof, we stress its connections with the theory of effective potentials for glassy systems, and we reduce the technically more difficult part of the Talagrand's analysis to an explicit evaluation of the solution of a variational problem.Comment: 20 pages, 5 figures. Added references and minor language correction

    General properties of overlap probability distributions in disordered spin systems. Toward Parisi ultrametricity

    Full text link
    For a very general class of probability distributions in disordered Ising spin systems, in the thermodynamical limit, we prove the following property for overlaps among real replicas. Consider the overlaps among s replicas. Add one replica s+1. Then, the overlap q(a,s+1) between one of the first s replicas, let us say a, and the added s+1 is either independent of the former ones, or it is identical to one of the overlaps q(a,b), with b running among the first s replicas, excluding a. Each of these cases has equal probability 1/s.Comment: LaTeX2e, 11 pages. Submitted to Journal of Physics A: Mathematical and General. Also available at http://rerumnatura.zool.su.se/stefano/ms/ghigu.p

    Stochastic collective dynamics of charged--particle beams in the stability regime

    Full text link
    We introduce a description of the collective transverse dynamics of charged (proton) beams in the stability regime by suitable classical stochastic fluctuations. In this scheme, the collective beam dynamics is described by time--reversal invariant diffusion processes deduced by stochastic variational principles (Nelson processes). By general arguments, we show that the diffusion coefficient, expressed in units of length, is given by λcN\lambda_c\sqrt{N}, where NN is the number of particles in the beam and λc\lambda_c the Compton wavelength of a single constituent. This diffusion coefficient represents an effective unit of beam emittance. The hydrodynamic equations of the stochastic dynamics can be easily recast in the form of a Schr\"odinger equation, with the unit of emittance replacing the Planck action constant. This fact provides a natural connection to the so--called ``quantum--like approaches'' to beam dynamics. The transition probabilities associated to Nelson processes can be exploited to model evolutions suitable to control the transverse beam dynamics. In particular we show how to control, in the quadrupole approximation to the beam--field interaction, both the focusing and the transverse oscillations of the beam, either together or independently.Comment: 15 pages, 9 figure

    On the Thermodynamic Limit in Random Resistors Networks

    Full text link
    We study a random resistors network model on a euclidean geometry \bt{Z}^d. We formulate the model in terms of a variational principle and show that, under appropriate boundary conditions, the thermodynamic limit of the dissipation per unit volume is finite almost surely and in the mean. Moreover, we show that for a particular thermodynamic limit the result is also independent of the boundary conditions.Comment: 14 pages, LaTeX IOP journal preprint style file `ioplppt.sty', revised version to appear in Journal of Physics

    The mean field Ising model trough interpolating techniques

    Full text link
    Aim of this work is not trying to explore a macroscopic behavior of some recent model in statistical mechanics but showing how some recent techniques developed within the framework of spin glasses do work on simpler model, focusing on the method and not on the analyzed system. To fulfil our will the candidate model turns out to be the paradigmatic mean field Ising model. The model is introduced and investigated with the interpolation techniques. We show the existence of the thermodynamic limit, bounds for the free energy density, the explicit expression for the free energy with its suitable expansion via the order parameter, the self-consistency relation, the phase transition, the critical behavior and the self-averaging properties. At the end a bridge to a Parisi-like theory is tried and discussed.Comment: 35 pages, no figur

    Replica symmetry breaking in mean field spin glasses trough Hamilton-Jacobi technique

    Full text link
    During the last years, through the combined effort of the insight, coming from physical intuition and computer simulation, and the exploitation of rigorous mathematical methods, the main features of the mean field Sherrington-Kirkpatrick spin glass model have been firmly established. In particular, it has been possible to prove the existence and uniqueness of the infinite volume limit for the free energy, and its Parisi expression, in terms of a variational principle, involving a functional order parameter. Even the expected property of ultrametricity, for the infinite volume states, seems to be near to a complete proof. The main structural feature of this model, and related models, is the deep phenomenon of spontaneous replica symmetry breaking (RSB), discovered by Parisi many years ago. By expanding on our previous work, the aim of this paper is to investigate a general frame, where replica symmetry breaking is embedded in a kind of mechanical scheme of the Hamilton-Jacobi type. Here, the analog of the "time" variable is a parameter characterizing the strength of the interaction, while the "space" variables rule out quantitatively the broken replica symmetry pattern. Starting from the simple cases, where annealing is assumed, or replica symmetry, we build up a progression of dynamical systems, with an increasing number of space variables, which allow to weaken the effect of the potential in the Hamilton-Jacobi equation, as the level of symmetry braking is increased. This new machinery allows to work out mechanically the general K-step RSB solutions, in a different interpretation with respect to the replica trick, and lightens easily their properties as existence or uniqueness.Comment: 24 pages, no figure
    • …
    corecore