32 research outputs found

    A Hierarchical Robust Control Strategy for Decentralized Signal-Free Intersection Management

    Get PDF

    Robust Model Predictive Control Framework for Energy-Optimal Adaptive Cruise Control of Battery Electric Vehicles

    Get PDF
    The autonomous vehicle following problem has been extensively studied for at least two decades with the rapid development of intelligent transport systems. In this context, this paper proposes a robust model predictive control (RMPC) method that aims to find the energy-efficient following velocity of an ego battery electric vehicle and to guarantee a safe rearend distance in the presence of disturbances and modelling errors. The optimisation problem is formulated in the space domain so that the overall problem can be convexified in the form of a semi-definite program, which ensures a rapid solving speed and a unique solution. Simulations are carried out to provide numerical comparisons with a nominal model predictive control (MPC) scheme. It is shown that the RMPC guarantees robust constraint satisfaction for the closed-loop system whereas constraints may be violated when the nominal MPC is in use. Moreover, the impact of the prediction horizon length on optimality is investigated, showing that a finely tuned horizon could produce significant energy savings

    A Robust Model Predictive Control Framework for Ecological Adaptive Cruise Control Strategy of Electric Vehicles

    Get PDF
    The recent advancement in vehicular networking technology provides novel solutions for designing intelligent and sustainable vehicle motion controllers. This work addresses a car-following task, where the feedback linearisation method is combined with a robust model predictive control (RMPC) scheme to safely, optimally and efficiently control a connected electric vehicle. In particular, the nonlinear dynamics are linearised through a feedback linearisation method to maintain an efficient computational speed and to guarantee global optimality. At the same time, the inevitable model mismatch is dealt with by the RMPC design. The control objective of the RMPC is to optimise the electric energy efficiency of the ego vehicle with consideration of a bounded model mismatch disturbance subject to satisfaction of physical and safety constraints. Numerical results first verify the validity and robustness through a comparison between the proposed RMPC and a nominal MPC. Further investigation into the performance of the proposed method reveals a higher energy efficiency and passenger comfort level as compared to a recently proposed benchmark method using the space-domain modelling approach

    A Convex Optimal Control Framework for Autonomous Vehicle Intersection Crossing

    Get PDF
    Cooperative vehicle management emerges as a promising solution to improve road traffic safety and efficiency. This paper addresses the speed planning problem for connected and autonomous vehicles (CAVs) at an unsignalized intersection with consideration of turning maneuvers. The problem is approached by a hierarchical centralized coordination scheme that successively optimizes the crossing order and velocity trajectories of a group of vehicles so as to minimize their total energy consumption and travel time required to pass the intersection. For an accurate estimate of the energy consumption of each CAV, the vehicle modeling framework in this paper captures 1) friction losses that affect longitudinal vehicle dynamics, and 2) the powertrain of each CAV in line with a battery-electric architecture. It is shown that the underlying optimization problem subject to safety constraints for powertrain operation, cornering and collision avoidance, after convexification and relaxation in some aspects can be formulated as two second-order cone programs, which ensures a rapid solution search and a unique global optimum. Simulation case studies are provided showing the tightness of the convex relaxation bounds, the overall effectiveness of the proposed approach, and its advantages over a benchmark solution invoking the widely used first-in-first-out policy. The investigation of Pareto optimal solutions for the two objectives (travel time and energy consumption) highlights the importance of optimizing their trade-off, as small compromises in travel time could produce significant energy savings.Comment: 16 pages, 11 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    THE CONTROL AND STABILITY ANALYSIS OF TWO–WHEELED ROAD VEHICLES

    No full text
    The multibody dynamics analysis software, AUTOSIM, is used to develop automated linear and nonlinear models for the hand derived motorcycle models presented in (Sharp, 1971, 1994b). A more comprehensive model, based on previous work (Sharp and Limebeer, 2001), is also derived and extended. One version of the code uses AUTOSIM to produce a FORTRAN or C program which solves the nonlinear equations of motion and generates time histories, and a second ver-sion generates linearised equations of motion as a MATLAB file that contains the state-space model in symbolic form. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of the nonlinear systems. The time histories produced by nonlinear simulation runs are also used with an animator to visualise the result. A comprehensive study of the effects of acceleration and braking on motorcycle stability with the use of the advanced motorcycle model is presented. The results show that the wobble mode of a motorcycle is significantly destabilised when the machine is descending an incline, or brak-ing on a level surface. Conversely, the damping of the wobble mode is substantially increased when the machine is ascending an incline at constant speed, or accelerating on a level surface

    Exclusive Operation Strategy for the Supervisory Control of Series Hybrid Electric Vehicles

    No full text
    corecore