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A Convex Optimal Control Framework for
Autonomous Vehicle Intersection Crossing

Xiao Pan, Boli Chen, Stelios Timotheou, and Simos A. Evangelou

Abstract—Cooperative vehicle management emerges as a
promising solution to improve road traffic safety and efficiency.
This paper addresses the speed planning problem for connected
and autonomous vehicles (CAVs) at an unsignalized intersection
with consideration of turning maneuvers. The problem is ap-
proached by a hierarchical centralized coordination scheme that
successively optimizes the crossing order and velocity trajectories
of a group of vehicles so as to minimize their total energy
consumption and travel time required to pass the intersection.
For an accurate estimate of the energy consumption of each CAV,
the vehicle modeling framework in this paper captures 1) friction
losses that affect longitudinal vehicle dynamics, and 2) the pow-
ertrain of each CAV in line with a battery-electric architecture.
It is shown that the underlying optimization problem subject
to safety constraints for powertrain operation, cornering and
collision avoidance, after convexification and relaxation in some
aspects can be formulated as two second-order cone programs,
which ensures a rapid solution search and a unique global
optimum. Simulation case studies are provided showing the
tightness of the convex relaxation bounds, the overall effectiveness
of the proposed approach, and its advantages over a benchmark
solution invoking the widely used first-in-first-out policy. The
investigation of Pareto optimal solutions for the two objectives
(travel time and energy consumption) highlights the importance
of optimizing their trade-off, as small compromises in travel time
could produce significant energy savings.

I. INTRODUCTION

Urbanization and the steady increase in vehicle numbers
are pushing transportation to its limits, resulting in severe
congestion, higher emissions and energy consumption, driver
discomfort and safety issues. These issues have promoted the
development of connected and autonomous vehicles (CAVs),
which can potentially mitigate the underlying problems [1].
Moreover, there is a growing interest in studying cooperative
vehicle management at intersections, which greatly impacts
the overall efficiency of road traffic systems, especially in
urban areas. The performance of traditional traffic light control
systems is limited due to the lack of sensing and commu-
nication capabilities. This incentivizes innovative intersection
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control schemes, which can leverage advanced vehicular com-
munication systems. A comprehensive overview of recent
advancements in intersection management techniques for both
signalized and unsignalized intersections is presented in [2].
A cooperative control strategy for a signalized intersection co-
ordinates the velocity of each CAV by utilizing signal phasing
and timing, which are received via vehicle-to-infrastructure
(V2I) communication to minimize the vehicle queuing time
[3], [4], [5], [6]. The present paper focuses on unsignalized
intersections, where the constraints introduced by the traffic
lights are removed and therefore they have the potential of
further reducing traffic delays and vehicle energy usage [7],
[8], [9], [10].

A large number of unsignalized intersection control meth-
ods, from centralized to decentralized, have been proposed
in the literature [11], [12], [13]. A second important catego-
rization of cooperative driving is vehicle prioritization, with
the prevalent approaches being: 1) First-In-First-Out (FIFO),
and 2) planning/scheduling-based. The former represents a
straightforward and easy-to-implement protocol, whereas the
latter also includes the determination of the optimal crossing
order subject to safety and throughput requirements [14], [15],
[16]. A comparative study of the two strategies is reported
in [17]. It is shown that the crossing sequence sought by a
planning-based approach usually leads to more efficient traffic
flow than the FIFO policy and the difference can become even
more apparent in high-volume traffic situations. However, the
computational cost of the planning-based approaches is much
higher and it grows exponentially as the number of vehicles
increases.

The foundation of centralized approaches involves a single
central controller that determines the velocity trajectories of
all the CAVs crossing the intersection. Common centralized
approaches are optimization-based with the main objective of
either increasing the throughput of an intersection (which can
be achieved by minimizing the travel time) [18] or reduc-
ing the vehicle energy consumption [19]. In particular, [20]
proposes a centralized model predictive control framework,
where the intersection crossing problem is formulated as a
convex quadratic program for minimizing energy consumption
by following a specific crossing sequence. However, single
objective optimization is not sufficient in most cases due to
the trade-off between the two goals of minimizing travel time
and energy consumption. In particular, minimizing the travel
time usually incurs high levels of vehicle energy consumption
and vice versa. Recent research effort has focused on the co-
optimization of energy consumption and travel time to find
the optimal trade-off in [21], [22], [23], where hierarchical
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and convex optimization approaches are developed subject
to a FIFO policy. Moreover, [24] presents a multi-objective
optimization method focusing on coordinating vehicles to
improve also driving comfort, in addition to energy and travel
time costs.

There have been numerous other efforts reported in the
literature based on decentralized control frameworks, where
the velocity of each individual CAV is found by sequentially
solving local optimization associated with each vehicle [25],
[26], [27], [28], [29], [30], [31]. An analytic optimization
method is proposed in [28] to address each local optimization
problem subject to a throughput maximization requirement.
Reference [29] presents a sequential optimal control approach
that is combined with a computationally efficient scheduling
method to maximize throughput. In [30], the sequential move-
ment of CAVs is modeled using multi-agent Markov decision
processes, while reinforcement learning is employed to find
each velocity trajectory. Turning maneuvers are integrated in
[32], [33], which present distributed coordinated frameworks
capable of finding near-optimal solutions. The work in [32]
solves the cooperative trajectory planning problem as vehicle-
level mixed-integer non-linear programs, whereas the work
in [33] solves the problem resorting to analytic optimiza-
tion techniques. More computationally efficient alternatives to
optimization-based approaches are heuristic control strategies
[34], [35], [36], which however do not have optimality guar-
antees in most cases.

A common drawback of all aforementioned methods is that
they sacrifice the accuracy of the overall modeling framework
to simplify the considered problem. The modeling sacrifice
occurs at four levels:

a) Non-optimal FIFO protocols are usually imposed to
streamline the coordination at a signal-free intersection
at the cost of coordination controller optimality.

b) Velocity trajectories in the majority of the works are not
optimized over the entire intersection area (including the
center of the intersection and the immediate vicinity).
The control actions stop immediately after the vehicles
leave the center of the intersection. Moreover, the speed
of CAVs at the center of the intersection is usually as-
sumed constant (non-optimal), which reduces the control
complexity but lacks optimality.

c) A lossless linear longitudinal model of each vehicle
is commonly utilized, where friction and aerodynamic
losses are neglected, and the vehicle acceleration acts as
the control input.

d) The somewhat inaccurate metric of L2-norm of the
acceleration is considered to represent the energy con-
sumption of each CAV and even without consideration
of powertrain losses that may be significant [21], [28].

Such formulations can maintain the problem complexity at a
manageable level even for a large number of CAVs, however,
the modeling inaccuracy would lead to suboptimal velocity
trajectories. Earlier work of the authors [22] has proposed
a new convex optimization paradigm in space coordinates
utilizing a realistic longitudinal vehicle model with nonlinear
resistance losses. The work has been extended in [23] by

integrating a battery-electric powertrain system (capable of
predicting powertrain losses) to enable more accurate control
solutions. The modeling framework employed in [37] also
overcomes the modeling shortcomings b), c) and d) and fur-
thermore it involves turning maneuvers. However, the crossing
order in [37] is predefined rather than being optimized and the
coordination problem is formulated as a nonlinear optimization
problem, which is computationally demanding.

The present paper expands the work in [23] to address the
autonomous intersection crossing problem for realistic scenar-
ios and with superior optimization efficiency, by introducing
and solving an important new combination of modeling fea-
tures and by enhancing the underlying optimization framework
with novel problem formulations and solutions. In more detail,
the contributions of the present work are:

1) The proposed coordination scheme optimizes in a hierar-
chical fashion the crossing order and the corresponding
velocity trajectories, involving turning maneuvers, within
the entire intersection area without invoking restrictive
assumptions on a) the crossing order (e.g., FIFO) or b)
the actual or average vehicle speed at any point within
the intersection or its center, which was the case in many
existing works, such as [21], [33], [37]. This new and
more challenging control paradigm can lead to a further
optimized solution.

2) Efficient solutions for the formulated coordinated scheme
are proposed by suitably relaxing the nonconvex con-
straints and reformulating both upper (crossing order
optimization) and lower (velocity trajectory optimization)
level nonconvex OCPs into convex second-order cone
programs (SOCPs) using a space-domain modeling ap-
proach.

3) The optimality of the proposed coordination scheme (with
a relaxed SOCP solution) is demonstrated by comparison
with a valid lower bounding optimal solution with ex-
panded feasibility. Moreover, the benefit over traditional
approaches is investigated by comparison with a bench-
mark solution that is obtained by following the FIFO
policy.

The remainder of this paper is organized as follows. Sec-
tion II introduces the modeling framework of an autonomous
intersection crossing problem, with consideration of the elec-
tric powertrain model of each CAV. The associated OCP
for energy consumption and travel time minimization is also
formulated in Section II , while the hierarchical coordination
scheme is introduced in Section III and the SOCP refor-
mulation of the original OCP is performed in Section IV.
Simulation results and discussion are presented in Section V.
Finally, concluding remarks are given in Section VI.

II. PROBLEM STATEMENT

A. Intersection Model

The present work considers a scenario where multiple
homogeneous CAVs approach an unsignalized intersection
and need to be regulated to ensure safe, smooth and energy
efficient of traffic flow. As illustrated in Fig. 1, the intersection
contains four branches coming from the north, south, east and
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west. For simplicity, it is assumed that all the roads in the

Fig. 1. Autonomous intersection with connected and autonomous vehicles.

intersection are flat with two lanes per perpendicular road (one
lane per branch), while lane changes and road slopes are not
considered in the present framework.

The centre of the intersection is the Merging Zone (MZ),
where vehicles merge from different directions, and therefore,
it is the area of potential lateral collisions. The area of the
MZ is considered to be a square of sides S. CAVs are
allowed to go straight through, or turn left or right in the
MZ, while U-turns are not allowed. The intersection has
a central traffic coordinator, called Intersection Controller
(IC). Vehicles approaching the intersection will first enter a
Communication Zone (ComZ), where the IC can communicate
with each CAV. The radius of the ComZ, ∆, depends on the
communication range capability of modern V2I technology.
Moving forward towards the intersection, the CAVs will enter
from the ComZ to the more compact Control Zone (CZ), inside
which the motion of each CAV is fully controlled by the IC.
The distance from the entry of the CZ to the entry of the MZ
is L, with ∆> L> S as the sensing range is usually much
greater than the physical length of the MZ and the CZ.

At each time, only the vehicles that are running within the
annulus between the boundaries of ComZ and CZ will be
considered for trajectory planning by the IC. Let us denote
N ∈ N>0 the total number of CAVs arriving at the ComZ
and remaining inside the annulus within a fixed time-interval
T ∈R>0, and N ={1, 2, . . . , N}∈ZN the set to designate the
agreed order in which the vehicles will cross the intersection.
The determination of the crossing order will be elaborated in
Section III as part of the coordination scheme. Furthermore,
all CAVs are considered as identical battery electric vehicles
(BEVs) with vehicle lengths equal to l, (l < S). These
assumptions are relatively straightforward to relax as long
as the vehicle lengths and powertrain models are known to
the central coordinator. The control target is to optimize the
total electric energy and time consumption of all N CAVs by
determining their speed trajectories (in a centralized manner)
from the entry of the CZ to the exit point of the CZ, which
depends on the turning decision of a CAV made at the MZ. In

the subsequent part of this paper, the decision of the ith CAV at
the intersection is denoted by di ∈ {−1, 0, 1}, wherein di=0
indicates going straight, while di =−1 and di =1 indicate a
left turn and a right turn, respectively.

The gross motion of CAVs is modeled by using the single-
track, non-holonomic vehicle model [38]. In this context,
the longitudinal dynamics are described by the following
differential equation:

d

dt
vi(t) =

Fw,i(t)− Fr − Fd,i(t)

m
, i∈N , (1)

where vi(t) is the linear (forward) velocity of the ith CAV,
m is the vehicle mass, Fw,i(t) is the powertrain driving or
braking force acting on the wheels, while Fr = frmg and
Fd,i(t) = fdv

2
i (t) are the resistance forces of rolling and air

drag, respectively, with fr and fd the coefficients of rolling
and air drag resistance. Moreover, Fw,i(t) can be broken down
into two separate control inputs, the powertrain driving force
Ft,i(t) and the mechanical braking force Fb,i < 0, such that

Fw,i(t) = Ft,i(t) + Fb,i(t). (2)

The main characteristic parameters of the vehicle model are
summarized in Table I.

TABLE I
ELECTRIC VEHICLE MODEL PARAMETERS

symbol value description
m 1200 kg vehicle mass
rw 0.3 m wheel radius
gr 3.5 transmission gear ratio
fr 0.01 rolling resistance coefficient
fd 0.47 air drag resistance coefficient
vmin 0.1m/s minimum velocity
vfmax 15m/s maximum forward velocity
amin −6.5m/s2 vehicle maximum deceleration
l 4m vehicle length

It is considered that the traffic follows the left-hand driving
system and all vehicles travel along the centerline of their lane.
The path of a turning CAV at the intersection can be modeled
as a 90◦ arc with turning radii Rl = S/4 for the left turn and
Rr = 3S/4 for the right turn. As such, the driving distance
of CAV i inside the MZ is:

δ(di) =


S, di = 0,
1

8
πS, di = −1,

3

8
πS, di = 1.

(3)

Considering that the mission starts when the front of the
vehicle enters the CZ and ends when its front reaches the
exit of the CZ, the total travel distance of each CAV within
the CZ is 2L+ δ(di).

Instead of formulating the problem in the time domain,
which is the common approach used in existing works, this
paper defines the intersection problem in the space domain,
which is beneficial for acquiring the vehicle arrival times
at any given position inside the CZ. This fact turns out
to be very useful in establishing time-dependent constraints
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and obtaining the travel time of each CAV required to cross
the intersection. The latter aspect greatly facilitates the joint
optimization formulation of energy and travel time costs rather
than requiring additional steps to tackle the free end-time
problem that appears if the problem is formulated in the time
domain [21]. The use of the space domain also allows the
overall intersection management problem to be formulated as
an SOCP, which offers a rapid and unique solution search as
compared to nonconvex counterparts, as will be shown later
in Section IV.

Let s denote the variable of traveled distance. By changing
the independent variable t to s via d

ds = 1
vi

d
dt , the differential

equation (1) describing the vehicle longitudinal dynamics can
be rewritten as:

d

ds
vi(s) =

Fw,i(s)−Fr−Fd,i(s)

mvi(s)
, i∈N , (4)

for all s ∈ [0, 2L+δ(di)]. As the model is formulated in the
space domain, the individual travel time ti of each CAV is
introduced as a system state, with its dynamics expressed by:

d

ds
ti(s) =

1

vi(s)
, i∈N , (5)

from which the required travel time of each CAV to traverse
the CZ can be expressed as,

Jt,i = ti(2L+ δ(di))−ti(0), (6)

where ti(0) is the entry time of CAV i in the CZ. The velocity
of each CAV is constrained by:

vmin ≤ vi ≤ vmax(s), (7)

where vmin is set to a sufficiently small positive constant to
avoid singularity issues in (5) without sacrificing the generality
of the formulation, and vmax(s) is set for safety and comfort
purposes and depends on the vehicle turning decision and the
position at the intersection. More specifically, the upper speed
limit vmax(s) is defined as a piecewise constant function,
which is vmax(s) = vfmax, ∀s ∈ [0, L)∪(L+δ(di), 2L+δ(di)]
whereas for s∈ [L,L+ δ(di)] in the MZ, it follows:

vmax(s) =

 vfmax, straight traveling,
vlmax, left turn,
vrmax, right turn,

(8)

with vlmax <vrmax <vfmax. In this work, speed limits for cor-
nering, vlmax, v

r
max, are estimated by utilizing the acceleration

diamond [38] that represents a constraint for ordinary drivers
on longitudinal and lateral accelerations for comfortable driv-
ing (away from the limits of tire adherence on the road):∣∣∣∣Fw,i/m

ax,max

∣∣∣∣+ ∣∣∣∣ viΩi

ay,max

∣∣∣∣ ≤ 1 , (9)

where Ωi is the vehicle yaw rate, defined by,

Ωi =

{
vi/Rl, left turn,
vi/Rr, right turn, (10)

and the physical limits of the longitudinal and lateral accel-
erations, ax,max and ay,max respectively, are chosen to be
the nominal gravitational acceleration g. Note that Fw,i/m

represents a good approximation of the longitudinal acceler-
ation (by ignoring the subtle influence of resistive forces Fr

and Fd,i) and viΩi corresponds to the lateral acceleration. The
acceleration diamond conforming to (9) is illustrated in Fig. 2.
As it can be seen, the longitudinal deceleration/acceleration
of each BEV is bounded by [Fw,min/m, Fw,max/m], where
Fw,max and Fw,min represent the maximum and minimum
available driving force acting on the wheels, respectively. Note
that the value of Fw,max will be defined later in Section II-B
on the basis of the motor efficiency map and associated
motor torque limits shown in Fig. 4, and Fw,min is chosen
such that amin = Fw,min/m be the peak deceleration for
braking, which provides a reasonable margin to the limit of
tire adhesion. In order to streamline the modeling framework,
under cornering the admissible zone for operation is taken
as the rectangular dark gray area shown in Fig. 2, which
corresponds to the uniformed longitudinal acceleration limits,
[−Fw,max/m, Fw,max/m]. Operation within this region can
be provided entirely by the powertrain driving force Ft,i,
where any amount of braking can be fully regenerated, and
which is compatible with the target of eco-driving sought in the
present work. Note that under straight running conditions, it is
further allowed to operate a CAV in the light gray area below
the mentioned dark gray area, however, in that case additional
mechanical braking, Fb,i, would be required. As the feasible
dark gray region also defines the maximum permissible lateral
acceleration (i.e., vΩ), which is realized at the four corners
of the rectangular dark gray area, the maximum permissible
speed for left and right turns, respectively, can consequently
be derived from (9) and (10) as follows:

Fw,min/m = amin

Fig. 2. Theoretical driving comfort limits represented by an acceleration
diamond [38] (thick solid lines) and the theoretical performance envelope
of the BEV (light gray area). For simplicity of implementation, a practical
performance region of the BEV (dark gray area) under cornering condi-
tions is assumed to be enveloped by longitudinal acceleration saturated at
±Fw,max/m (horizontal dashed lines) and conservative lateral acceleration
limits (vertical dotted lines). Fw,max is calculated based on the BEV motor
torque limits shown in Fig 4 and amin is given in Table I.

vlmax =

√(
1− Fw,max/m

ax,max

)
ay,maxRl , (11a)

vrmax =

√(
1− Fw,max/m

ax,max

)
ay,maxRr . (11b)
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Additional constraints, the collision avoidance constraints,
are designed to address further safety challenges of the
unsignalized intersection coordination problem. Note that,
given an arbitrary CAV i and s∈ [0, L], any CAV j∈N , j >i
must belong to one of the following four subsets of N : 1)
Ci collects vehicles traveling in the same direction as the
ith vehicle; 2) Oi collects vehicles traveling in the opposite
direction to the ith vehicle; 3) PL,i and PR,i collect vehicles
traveling in the perpendicular directions to the ith vehicle from
its left and right hand sides, respectively.

Assuming CAV i is immediately ahead of CAV k with k ∈
Ci, the following constraint on the time gap, tk(s)−ti(s+ l),
is imposed to ensure the absence of rear-end collisions

tk(s)−ti(s+ l) > max

(
vk(s)− vi(s+ l)

|amin|
, tδ

)
, (12)

where the first term in the max function of the inequality
represents the time-to-collision [39], and tδ is a small time
constant to enforce a safety margin invariably.

The rear-end collision avoidance constraint (12) is enforced
over the entire space horizon [0, 2L + δ(di)] if dk = di.
However, when dk ̸= di, (12) is needed only for s ∈ [0, L]
whereas for the rest of the mission, s ∈ [L, 2L+ δ(di)], only
the following constraint is imposed:

ti(L+ δ(di) + l) ≤ tk(L), k ∈ Ci, (13)

which prevents rear-end collisions between CAVs i and k
within the MZ as it does not allow them to travel inside the
MZ at the same time.

For any CAV j /∈ Ci, j > i, it is clear that a collision can
only arise after they enter the MZ, for s ∈ [L, 2L+ δ(di)]. In
order to discuss collision threats (including side and rear-end
collisions) in this context, let us further define subsets of Oi,
PL,i and PR,i in relation to the intention dj of vehicle j, as
follows:

Oi = Ol
i ∪ Os

i ∪ Or
i , (14)

PL,i = P l
L,i ∪ Ps

L,i ∪ Pr
L,i, (15)

PR,i = P l
R,i ∪ Ps

R,i ∪ Pr
R,i, (16)

where the superscripts l, s, r denote left turn, going straight
and right turn of the jth vehicle, respectively. Potential col-
lisions between CAVs i and j may occur if CAV j belongs
to:

Li ≜


Or

i ∪ PL,i ∪ Ps
R,i ∪ Pr

R,i, if di=0,

Or
i ∪ Ps

R,i ∪ Pr
R,i, if di=−1,

Oi ∪ PL,i ∪ Ps
R,i ∪ Pr

R,i, if di=1,
(17)

which is influenced by the decision di of the lead CAV i at the
MZ. An illustration of these collision models is given in Fig. 3.
To prevent such collisions inside the MZ between vehicles i
and j ∈Li, the IC simply follows the rule that the jth CAV
enters the MZ only after CAV i has left the MZ, and once
again (13) is applicable. If vehicle j further belongs to Di

that is a subset of Li, defined by:

Di ≜


P l
L,i ∪ Pr

R,i, if di=0,

Or
i ∪ Ps

R,i, if di=−1,

Ol
i ∪ Ps

L,i, if di=1,
(18)

both CAVs i and j merge into the same lanes after the MZ. As
such, the rear-end collision avoidance constraint (12) is once
again required for s∈ [L + δ(di), 2L + δ(di)] so as to avoid
potential rear-end collision between these vehicles. Otherwise,
when j ∈ Li\Di, then both vehicles travel towards different
directions after leaving the MZ, which excludes the possibility
of collisions outside the MZ. The above characterization of
the potential collisions (18) after the MZ is a novelty of
the present work and extremely important when turns are
allowed, as vehicles may travel in the same direction after
leaving the MZ, but with a noticeable difference in speed,
which could lead to a rear-end collision immediately after
the MZ; for example, a left-turning vehicle traveling at low
speed followed by a straight driving vehicle traveling at high
speed in a perpendicular direction. The treatment of these
scenarios has not been addressed in the literature as it is only
permitted with the extended control horizon that spans the
whole CZ, including the section after the MZ, which is one
of the important contributions of the present paper.

Finally, for any CAV h /∈ Li ∪ Ci, there is no interference
between CAV h and i inside the MZ. Hence, only the
following constraint is required:

ti(L+ δ(di)) ≤ th(L+ δ(di)), h > i. (19)

As opposed to the more restrictive constraint (13), constraint
(19) allows multiple CAVs in and to exit the MZ at the same
time.

B. Powertrain System and Energy Consumption Model

To formulate the vehicle energy consumption, it is essential
to include the tank-to-wheel energy path, which depends on
the powertrain of the vehicle. As the CAVs are all battery
electric vehicles, their energy consumption can be evaluated
by their battery energy cost.

The powertrain connected to the battery contains a DC/DC
converter, an electric motor and a transmission set, where
both the converter and the transmission are simply modeled
by constant efficiency factors and the efficiency of the motor
is modeled as a static efficiency map [38]. Fig. 4 shows the
joint efficiency map of all three components. According to
established literature, the input power (electric side) of the
motor, Pb,i, can be represented as a quadratic function of
motor force, Ft,i, and vehicle speed (equivalent to motor
torque and angular speed respectively), given by [40]:

Pb,i = b1F
2
t,i + b2Ft,ivi, i∈N , (20)

where b1 and b2 are fitting parameters. The motor
torque is constrained by speed dependent limits Ti ∈
[Tmin(ωi), Tmax(ωi)] such that the operational limits of Ft,i

become,
gr
rw

Tmin ≤ Ft,i ≤
gr
rw

Tmax , (21)

with gr and rw the transmission gear ratio and the wheel
radius, respectively. From Fig. 4, the motor torque limits
Tmax and Tmin are constant until the angular speed reaches
approximately 2800 rpm, which corresponds to a forward
speed at 25 m/s. However, it is reasonable to impose a much
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(a) Or
i ∪PL,i ∪Ps

R,i ∪Pr
R,i, if di=0. (b) Or

i ∪ Ps
R,i ∪ Pr

R,i, if di=−1. (c) Oi ∪PL,i ∪Ps
R,i ∪Pr

R,i, if di=1.

Fig. 3. Illustration of potential collisions (17) between CAVs i (white vehicle) and j (yellow vehicles) at the MZ with j > i.
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Fig. 4. Efficiency map of the electric motor (positive torque indicates battery
discharging and negative torque represents battery charging) and operational
bounds (dotted lines) for the reversible motor. The area surrounded by red
dashed lines denotes the operational region for the feasible vehicle speed
specified by (7).

lower speed limit for vehicles approaching an intersection.
Considering the speed limit vfmax for straight running (max-
imum possible speed within CZ) given in Table I, constant
motor toque limits (±300 Nm) can be applied, as illustrated
in Fig. 4. Overall, the physical limits of the force on the wheels
from the powertrain, Fw,i (see (2)), can be expressed as:

mamin ≤ Fw,i ≤
gr
rw

Tmax (= Fw,max) . (22)

Battery power is a nonlinear function of Pb,i due to the
internal resistive losses, which are insignificant compared
to other powertrain losses [41]. Hence, it is reasonable to
neglect the influence of the battery internal resistance and to
approximate the battery power by Pb,i, such that the battery
energy usage of a single CAV can be found by integrating Pb,i

in the space domain as follows:

Jb,i =

∫ 2L+δ(di)

0

Pb,i(s)

vi(s)
ds. (23)

The following assumptions are imposed to complete the
modeling framework described above.

Assumption 1: All the vehicle information (e.g., position,
velocity, acceleration) can be measured precisely, and the data
can be transferred between each CAV and the IC without errors
and delays.

Assumption 2: After entering the CZ, all CAVs are capable
of precisely following the trajectories provided by the IC with
no deviations, e.g. due to modeling and measurement errors.

Assumption 3: The decision of each vehicle on whether a
turn is to be made at the MZ and their arrival time and speed
at the CZ are known upon its entry at the ComZ.

Assumption 4: For each CAV i, constraints (7), (12) and
(22) are inactive at ti(0).

Assumption 5: All the CAVs leave the CZ at the same
terminal speed v̄ ∈ [vmin, vmax], such that

vi(2L+ δ(di)) = v̄, ∀i ∈ N (24)

Assumption 1 - 2 may be not valid for practical vehicular
networks. On that occasion, it can be relaxed by using a
worst-case analysis as long as the measurement and commu-
nication uncertainties are bounded. More conservative safety
constraints can be formulated by incorporating the upper
bounds on the uncertainties (e.g., measurement noise, commu-
nication delay, etc). Assumption 3 is essential to implement
the centralized optimal control scheme. The feasibility of this
assumption can be justified if CAVs are managed to enter
the CZ at a predefined speed and time. Relaxation of the
assumption can be accomplished by using a model predictive
control framework. Assumption 4 is needed to ensure that all
CAVs arriving at the CZ have feasible initial states and initial
control inputs. The Assumption 5 is intended to streamline
the framework and to allow solutions in different scenarios
to be compared. Further relaxation of (24) (non-uniform
vi(2L+ δ(di))) can be made easily, if necessary.

C. Optimal Control Problem Formulation

The central IC aims to find the crossing order and speed
trajectories of all CAVs which minimizes a weighted sum of
the aggregate battery electric energy, Jb,i as defined in (23),
and traveling time, Jt,i as defined in (6), subjected to the
aforementioned constraints related to vehicle physical limits
and safety regulations. For a specific crossing order N , this
optimal control problem can be formulated as:
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OCP 1:

min
u

J(x,u) =

N∑
i=1

W1Jt,i +W2Jb,i (25a)

s.t. :
d

ds
x = f (x,u, s) (25b)

ψ (x,u, s) ≤ 0 (25c)
ϕ (x(0),x(2L+ δ(di))) = 0, (25d)

where

x = [v1, v2, . . . , vN , t1, t2, . . . , tN ]⊤,

u = [Ft,1, Ft,2, . . . , Ft,N , Fb,1, Fb,2, . . . , Fb,N ]⊤, (26)

represent the system state and control variables, respectively.
W1, W2 are the weighting factors tuned to balance the trade-
off between the two objectives. The state vector x evolves ac-
cording to the dynamic system (25b) that encompasses (4) and
(5). The inequality constraints (7), (12), (13), (19) and (21)-
(22) are taken into account by (25c). The boundary conditions
(25d) specify the initial and terminal conditions of the states,
which fulfil the conditions imposed in Assumptions 4 and 5.
To find the global optimum, OCP 1 has to be solved for all
possible crossing orders. For a scenario with N vehicles, there
are potentially N ! different orders under which the vehicles
can cross the intersection. Therefore, the problem becomes
intractable for practical problem sizes.

III. THE HIERARCHICAL CENTRALIZED COORDINATION
SCHEME

In this section, we present an efficient control-based co-
ordination strategy, which circumvents the complexity issue
introduced in Section II-C, and yet it provides close-to-optimal
solutions. As shown in Fig. 5, the control framework is
composed of two levels, a crossing order scheduler and a
trajectory optimizer, deployed in a hierarchical manner. In
particular, the upper-level scheduler determines an optimal
crossing order N whereas the lower-level optimizer solves the
optimal trajectories of all CAVs so that collision avoidance is
guaranteed for the given order. Each scheme involves solving
an individual coordination problem in a centralized fashion.
Next, we specify the two steps of our approach.

A. Crossing Order Scheduler

Considering the single lane road depicted in Fig. 1, CAVs
approaching the intersection from the same direction will
enter and leave the MZ in the same order they arrive at the
CZ. Therefore, the major challenge stems from the collision
avoidance and prioritizing constraints for CAVs merging from
different directions, i.e., (13) and (19), which depend on the
crossing order. To determine an optimal crossing order without
invoking an exhaustive search, we define a virtual coordination
problem in the form of OCP 1:

OCP 2:

min
u

J(x,u) (27a)

s.t. : (4), (5), (7), (12), (21), (22) and (24) (27b)

Fig. 5. The hierarchical centralized coordination scheme. Ni and No

represent the resulting CAV orders solved by OCP 2 based on the entry and
exit times at MZ, respectively, defined in Section III-A.

where (13) and (19) are not imposed.
Solving OCP 2 yields a set of optimal (non-conservative)

CAV trajectories from which the IC can determine the cross-
ing order for the lower-level coordinator. The main idea is
motivated, as see in (13) and (19), by the fact that vehicles
with intersected trajectories within the MZ should follow a
crossing order based on their optimized entry times at the MZ.
Otherwise, for those vehicles with no intersection between
their trajectories in the MZ, their orders are determined by
their MZ exit times. As such, the implementation steps after
solving OCP 2 are performed as follows.
Step 1: Sort CAVs based on their optimized entry times at the

MZ, and let Ni denote the resulting order and denote
with (Ni)

k the k-th element in the order.
Step 2: Label successive CAVs, i.e. (Ni)

k and (Ni)
k+1, ∀k =

0, · · · , N−1, with “with collision potentials” or “no
collision potentials”, depending on their entry posi-
tions and intentions.

Step 3: Sort CAVs based on their MZ exit times, and let No

denote the resulting order.
Step 4: Swap the orders of (Ni)

k and (Ni)
k+1, ∀k =

0, · · · , N−1 in Ni, if they have reversed orders in No

((Ni)
k+1 leaves the MZ ahead of (Ni)

k) and they are
labelled “no collision potentials”.

Step 5: By repeating Step 4 for all successive CAV pairs in Ni

with regard to No, the crossing order N is obtained.

B. Trajectory Optimizer

Given the intersection crossing order obtained from OCP 2,
the trajectory of each CAV can be optimized by solving OCP 1
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but with (13), (19) enforced based on the new agreed order
N .

OCP 3:

min
u

J(x,u) (28a)

s.t. : (4), (5), (7), (12), (13), (19), (21), (22) and (24) (28b)

It is noteworthy that OCP 2 and OCP 3 are difficult to tackle
due to the presence of the nonconvex electric energy consump-
tion model (23), and the nonlinear vehicle longitudinal model
(4) and (5). In this regard, the convex reformulation of OCP 2
and OCP 3 is discussed in the next Section.

Remark 1: Given a crossing order obtained in the upper
level, there might be a case where no feasible solution can
be found in the lower level due to the discrepancy between
the upper and lower optimization problems. This can be
addressed by recursively solving the lower-level problem with
continuously reducing vmin, which then terminates when a
valid solution is found.

IV. CONVEX PROBLEM FORMULATION AND BENCHMARK
SOLUTIONS

In this Section, a convex approximation that yields a fea-
sible upper-bound solution of (25) is introduced, and then
a lower-bound solution and a conventional baseline solution
(obtained from the simple lossless model in the literature)
are also defined for benchmarking purposes. Some conceptual
preliminaries are introduced before the convex reformulation.
As the differences of OCP 2 and OCP 3 only consist in
two linear constraints (13), (19) that are independent of the
convexification, we will use OCP 2 as a representative example
for the analysis; the same analysis also applies for OCP 3.

An SOCP is a convex optimization problem of the form:

min
z
cT z

s.t. :F z = h

||Aiz+ ri||2 ≤ αT
i z+ βi, i = 1, . . .

(29)

where z ∈ Rn is the optimization variable and c, F , h, Ai, ri,
αi, βi are problem parameters. ||·||2 is the standard Euclidean
norm, and the associated constraint,

||Aiz+ ri||2 ≤ αT
i z+ βi ,

is called a second-order cone constraint.

A. Proposed solution (SOCP-UB)

The SOCP formulation of OCP 2 is carried out in three
steps: 1) reformulation of the objective function, 2) state
transformation to linearize the longitudinal dynamics of each
CAV, and 3) reformulation of the nonconvex state constants
resulting from 2). Certain approximations are applied in 1)-3)
under the condition that the approximated problem is feasible
to the original problem.

a) Step 1: After the substitution in (23), the electric
power defined in (20) becomes a nonconvex model for battery
energy usage due to the presence of F 2

t,i(s)/vi(s). This paper
proposes an immediate solution to convexify the resulting
battery energy model by replacing the power model (20) with:

P b,i = b1F
2
t,ivi + b2Ft,ivi + b3vi, (30)

that can be made to fit tangentially from above (as shown
in the top plot in Fig. 6) the results of the battery power
according to (20) calculated based on the efficiency map in
Fig. 4. The fitting parameters b1, b2, b3 are obtained by solving
the following constrained optimization problem:

min
b1b2b3

∥∥P b,i(vi, Ft,i)− Pb,i(vi, Ft,i)
∥∥
2

(31a)

s.t.: P b,i(vi, Ft,i)− Pb,i(vi, Ft,i) ≥ 0 . (31b)

which ensures P b,i(vi, Ft,i) is an upper bound to the optimal
power of the original problem OCP 2. By substituting (30)
into (23), the battery energy usage integral of a single CAV for
the SOCP-UB problem can be rewritten in a convex quadratic
form:

Jb,i =

∫ 2L+δ(di)

0

b1Ft,i(s)
2 + b2Ft,i(s) + b3 ds. (32)

Fig. 6. Nonlinear regression of the motor power data (red dots, calculated
based on the efficiency map shown in Fig. 4 using (20)) by using upper
(Top) and lower tangential fitting (Bottom) for SOCP-UB and SOCP-LB,
respectively. The R-square fit for the upper case is 94.33% and 95.13% for
the lower case, respectively.

b) Step 2: To linearize the nonlinear dynamics (4) and
(5), a change of variable is performed, vi → Ei, where Ei(s)
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is the kinetic energy of CAV i defined by Ei(s) =
1
2mv2i (s).

As such, (4) and (5) can be rewritten as:

d

ds
Ei(s) = Ft,i(s) + Fb,i(s)− Fr − 2

fd
m

Ei(s) , (33a)

d

ds
ti(s) =

1√
2Ei(s)/m

, i ∈ N , (33b)

where (33a) becomes linear with respect to the transformed
state Ei(s) whereas the dynamics of ti(s) remain nonlinear.
Due to the convexity of (33b), it is reasonable to relax the
dynamic equation of ti(s) into a linear differential equation
along with a convex inequality constraint and a penalized cost
function of (25a), described as follows:

d

ds
ti(s) = ζi(s) , (34a)

ζi(s) ≥
1√

2Ei(s)/m
, (34b)

min
u,ζ

J(x,u, ζ) =

N∑
i=1

W1J̃t,i +W2Jb,i, (34c)

where ζ = [ζ1, ζ2, . . . , ζN ]⊤ is a vector of auxiliary control
variables ζi(s), and J̃t,i is the travel time estimated by ζi:

J̃t,i =

∫ 2L+δ(di)

0

ζi(s)ds . (35)

With J̃t,i minimized, the control variable ζi(s) intends to
find its minimum boundaries (i.e. ζi(s) = 1/

√
2Ei(s)/m)

as solutions. For all the practical scenarios of interest in the
present work, it has been found that the present formulation
yields a tight solution for (34b), which is considered adequate
for the present purposes. Under certain initial conditions, for
example, the i+1th CAV has proximate arrival time and much
higher entering speed at the CZ compared to the ith CAV,
the tightness of (34b) may be violated. Such conditions are
unusual in practice and not directly addressed in the present
work, however, when they are detected it can be envisaged that
control within the ComZ for CAVs i + 1 and the subsequent
CAVs can enable them to arrive at the CZ with valid initial
conditions.

To deal with the square root in the non-quadratic constraint
(34b), both sides of the constraint are squared yielding,

ζi(s)
2Ei(s) ≥ m/2 (36)

which is equivalent to [42]:

Ei(s) ≥ ρ21,i(s) (37a)

ζi(s) ≥ ρ2,i(s) (37b)

ρ1,i(s)ρ2,i(s) ≥
√
(m/2) (37c)

ρ1,i(s) ≥ 0, ρ2,i(s) ≥ 0 (37d)

with ρ1,i(s) and ρ2,i(s) auxiliary control variables.
The kinetic energies Ei are bounded due to the boundedness

of the permissible speed limits (7):

Emin ≤ Ei(s) ≤ Emax, i ∈ N , (38)

where Emin =
1
2mv2min and Emax =

1
2mvmax(s)

2 are respec-
tively determined by the velocity limits vmin and vmax.

c) Step 3: After replacing vi(s) with Ei(s), the rear-end
collision avoidance constraint (12) becomes:

tk(s)−ti(s+ l)

> max

(√
2Ek(s)/m

|amin|
−
√

2Ei(s+ l)/m

|amin|
, tδ

)
, (39)

which is equivalent to

tk(s)−ti(s+ l) > tσ (40a)

tk(s)−ti(s+ l) >

√
2Ek(s)/m

|amin|
−
√
2Ei(s+ l)/m

|amin|
(40b)

As it can be noticed, (40b) yields a noncovex feasible set.
An immediate and effective solution to convexify the feasible
region is to linearize the nonlinearity induced by the term√
2Ek(s)/m (see Fig. 7). Let us consider f(Ek(s)) a linear

approximation of the velocity vk(s) =
√
2Ek(s)/m, such

that,

f(Ek(s)) = a0 + a1Ek(s) , ∀Ek(s) ∈ [Emin, Emax], (41)

where a0 and a1 are obtained through a constrained least-
squares optimization for Ek ∈ [Emin, Emax]:

min
a0,a1

∥∥∥f(Ek)−
√
2Ek/m

∥∥∥
2

(42a)

s.t.: f(Ek)−
√
2Ek/m ≥ 0 . (42b)

which is formed to maximize feasibility while preserving
convexity. The problem (42) is a simple linear regression
problem that can be solved effortlessly. It is noteworthy that
there exists a unique solution f∗(Ek(s)) = a∗0 + a∗1Ek(s)
that is tangential to

√
2Ek(s)/m. As such, the feasibility is

confined to a convex set with the boundary f∗(Ek(s)) rather
than

√
2Ek(s)/m, as shown in Fig. 7.

20 40 60 80 100 120

0

5

10

15

Fig. 7. The solid line shows the linearly approximated relationship between
kinetic energy and velocity. The grey region denotes the feasible set and the
shaded grey areas indicate the sacrificed feasibility due to the artificial conser-
vativeness. The dashed line shows a nonconservative envelope approximation,
which allows to generate a lower bound solution for benchmarking purposes.

Considering the linearization performed by (42), the con-
straint (40b) can be converted to a convex inequality, as
follows:

tk(s) − ti(s + l) >
a∗0+a∗1Ek(s)−

√
2Ei(s+ l)/m

|amin|
(43)

which is a relaxed and conservative (see the shaded grey
areas in Fig. 7) constraint with a larger tolerance on the car-
following safety distance, particularly during the low and high
speed ranges. Note that the nonlinear term of Ei is retained
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as the linearization of Ek is sufficient to ensure the convexity
of the problem. As such, it avoids extra conservativeness that
would be introduced if it was also approximated. To preserve
more feasibility, one may use a successive convexification
algorithm, which is more computationally demanding due to a
recursive project-and-linearize procedure [43]. Despite using
a simple linearization, the proposed algorithm is shown to
yield close-to-optimal results as will be verified by a non-
conservative lower bounding solution defined in Section IV-B.

Next, it is shown that the non-quadratic constraint (43) can
be quadratically reformulated. By rearranging (43), it holds
that:

γi(s) > −
√
2Ei(s+ l)/m

|amin|
, (44)

where,

γi(s) = tk(s)−ti(s+ l)− a∗0+a∗1Ek(s)

|amin|
, (45)

is a linear combination of state variables. If γi(s)≥0 (which
indicates the time gap between two consecutive vehicles is
sufficiently large for the following vehicle k to fully stop
without collision), the inequality (44) holds naturally as
−
√
2Ei(s+ l)/m/|amin| is always negative. On the other

hand, if γi(s) < 0, it yields,√
2Ei(s+ l)/m

|amin|
> −γi(s)(> 0),

which, by squaring both sides, is equivalent to,
2Ei(s+ l)/m

a2min

> γi(s)
2.

After rearrangement, it yields:

2Ei(s+ l) > ma2minγi(s)
2, (46)

which is the quadratic counterpart of (43).
Thus, OCP 2 can be transformed into the following opti-

mization problem:

min
ũ

J̃ =

N∑
i=1

W1J̃t,i +W2Jb,i (47a)

s.t.: d

ds
x(s) = f(x, ũ, s) , (47b)

ψ(x(s), ũ(s)) ≤ 0 , (47c)
ϕ(x(0),x(2L+ δ(di))) = 0 , (47d)

where ũ≜[u, ζ,ρ]⊤ and ρ≜[ρ1,1, . . . , ρ1,N , ρ2,1, . . . , ρ2,N ]⊤

and J̃ is expressed in quadratic form with J̃b,i and J̃t,i defined
in (32) and (35), respectively. The dynamic constraints (47b)
are formed by (33a) and (34a). The inequality constraints (47c)
include the state constraints (38), (40a), (46) (whereas the
reformulated OCP 3 also involves the two linear constraints
(13), (19)) and the control limits (21)-(22), (37). Finally, the
problem is completed by the boundary condition:

Ei(2L+ δ(di)) =
1

2
mv̄2, ∀i ∈ N

that is inferred from (24). Since the objective function and
constraints are quadratic, this problem can be immediately
turned into an SOCP [42].

B. Benchmark solutions

To provide an indication of and therefore evaluate how far
a solution is from the true optimal, it is important to develop
a lower bounding formulation of OCP (25). In addition, a
baseline solution with the FIFO policy is also solved for
further comparison.

a) Lower bounding SOCP (SOCP-LB): Note that the so-
lution of OCP 2 yields a lower bound on the objective function
value compared to the global optimum of OCP 1. It is proper
to consider SOCP-LB as the solution of OCP 2. To preserve
its non-conservativeness, convexification of OCP 2 in such a
case requires tight approximations from below of the root term√
2Ek(s)/m in (39) and of the battery power relationship in

(20). An immediate solution for the former approximations to
connect the two end points

√
2Emin/m and

√
2Emax/m of

the trajectory of
√
2Ek(s)/m,∀Ek ∈ [Emin, Emax], yielding

a straight line f∗(Ek(s)) as shown in Fig 7. In this context,
the problem is solved over the entire feasible set plus a
small portion of infeasible set whereby the solution (possibly
infeasible) guarantees the same or smaller objective function
values compared to the true optimal of the OCP (25).

For the latter approximation, a lower tangential fitting to the
battery power is performed (see Fig. 6) to obtain:

P b,i = b1Ft,i(s)
2vi + b2Ft,ivi + b3vi,

where b1, b2, b3 can be obtained analogously to (31).
Following the same steps in the SOCP-UB introduced in

Section IV-A, it is straightforward to formulate SOCP-LB
simply by replacing a∗0 and a∗1 in (43) with the coefficients
of the straight line f∗(Ek(s)), and by substituting P b,i(s) in
(32) with P b,i(s), as follows:

Jb,i =

∫ 2L+δ(di)

0

b1Ft,i(s)
2(s) + b2Ft,i(s) + b3(s) ds. (48)

b) Baseline solution (SOCP-Baseline): The baseline so-
lution consist in solving OCP 3 by following the SOCP
framework proposed in Section IV-A with the constraints (13)
and (19) set in line with the FIFO protocol, as with the
approaches widely used in the literature [21], [28].

C. Energy Consumption Evaluation

For a fair comparison between different methodologies, the
battery energy consumption for all methods is evaluated using
the nominal motor efficiency map in Fig. 4. For a single CAV
i, it follows E∗

Bat,i=
∫ 2L+δ(di)

0
F ∗

Bat,i(s) ds, where

F ∗
Bat,i(s)=


F ∗
t,i(s)

ηm(F ∗
t,i(s), E

∗
i (s))

, ∀Ft,i(s) ≥ 0,

(F ∗
t,i(s)− F ∗

b,i(s))ηm(F ∗
t,i(s), E

∗
i (s)),
∀Ft,i(s) < 0.

(49)
E∗

Bat,i(s) is the actual battery energy consumption obtained
by following the optimal control actions F ∗

t,i(s), F
∗
b,i(s) and

the corresponding optimal state E∗
i (s) solved in each case,

and ηm(F ∗
t,i(s), v

∗
i (s)) is the powertrain efficiency (a look-up

table) shown in Fig. 4.
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Fig. 8. Trajectories of the first 20 CAVs among 60 CAVs by solving the SOCP-UB with N=60 CAVs at an arrival rate of 750 veh/h per lane. The dashed black
line represents the end of the MZ. The dash-colored trajectories correspond to trajectories of all CAVs passing the entry of the MZ. The four vehicle heading
directions are denoted with different colors. The numbers with # denote the crossing order N and the numbers in the brackets are the arriving order at the CZ.
The crossing order for the first 20 CAVs computed by the upper-level scheduler is N = {2, 1, 3, 4, 6, 5, 7, 8, 10, 9, 11, 12, 13, 14, 15, 17, 16, 19, 20, 18}.

Fig. 9. Optimal speed profiles for the first 20 CAVs among 60 CAVs by solving the SOCP-UB at an arrival rate of 750 veh/h per lane with the peak speed
limit at 15 m/s. The solid lines represent the trajectories before vehicles enter the MZ, while the dashed lines show the speed profiles after the vehicle enters
the MZ. The numbers with # denote the crossing order N and the numbers in the brackets are the arriving order at the CZ.

V. NUMERICAL RESULTS

The evaluation of the proposed method is fourfold: 1) the
SOCP-UB (47) is solved for different weighting combinations
{W1,W2} of (47a) under a series of different arrival rates
to show the trade-off between energy cost and travel time
as well as the impact of the traffic density on the overall
optimality; 2) the relationship between the safety margin
between the vehicles and energy consumption is examined by
solving SOCP-UB for different arrival rates subject to a fixed
average travel time; 3) the tightness of the relaxation bounds
involved in SOCP-UB is investigated by benchmarking SOCP-
UB against SOCP-LB; 4) the performance of the SOCP-UB
is compared to the SOCP-Baseline to show the benefit of the
proposed coordination scheme over the FIFO policy in terms
of optimality.

In the following case studies, we consider an intersection
following the layout in Fig. 1, with L=150m and S=10m.
Given the size of the MZ, the turning radii can be calculated
as Rl = 2.50 m and Rr = 7.50 m, and from (11), vlmax and
vrmax are determined as vlmax=4.16 m/s and vrmax=7.19 m/s.
vmin = 0.1 m/s and vfmax = 15 m/s are also applied. All the
vehicles are assumed to leave the intersection at the same
terminal speed v̄ = 10m/s. In (12), the time safety margin
is set to tδ =∆s/vmax = 0.13 s with ∆s= 2m the sampling
space, to accommodate the rapid velocity changes within a
sampling space interval. Without loss of generality, the control
problem is initialized with randomized initial conditions vi(0)
and ti(0) for all CAVs subject to the constraints imposed in
Assumptions 4. In particular, CAVs’ initial speeds follow a
uniform distribution within [vmin, vmax], while their arrival
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times, ti(0), follow a Poisson distribution. Moreover, the entry
direction and turning decisions, di of each CAV are also
randomly generated. The SOCP is solved using the convex
solver CVX with MOSEK [44] in Matlab on a personal
computer with Intel Core i5 2.9 GHz and 8 GB of RAM.
Table. II shows that the average running time for 20 vehicles
is less than 3 s, and it is less than 8 s when the vehicle number
is increased to 60. To present a general traffic flow scenario,

TABLE II
AVERAGE, MINIMUM & MAXIMUM COMPUTATION TIME OF 100

SIMULATION TRIALS WITH RANDOMIZED INITIAL CONDITIONS FOR THE
PROPOSED HIERARCHICAL CENTRALIZED COORDINATION SCHEME.

Vehicle number, N 20 60
Average Computational time [s] 2.71 7.52
Minimum Computational time [s] 2.59 7.30
Maximum Computational time [s] 2.86 7.89

the vehicle number in the following cases is set to N=60.
In the first instance, the SOCP-UB is solved at an arrival rate

of 750 veh/h (vehicles per hour) per lane, which is ordinary
for practical intersections. The weighting factors are set to
emphasize more on the travel time term in the objective
function. For illustrative purposes, the traveled distance and
velocity profiles of only the first 20 CAVs are shown as the
rest of the vehicles exhibit similar patterns of distance and
speed profiles. Fig. 8 shows the traveled distance profiles. As
can be observed, the cooperatively assigned crossing order N
is distinct from the arriving order at the CZ owing to the
upper-level scheduling mechanism. Given order N defined in
the upper-level, the lower-level controller schedules the CAVs
such that no CAV violates the rear-end and lateral collision
constraints, which verifies the validity of the optimal solution.
More specifically, if two vehicles have a potential collision
inside the MZ, the following one will not be allowed to
enter the MZ until the vehicle ahead has left (see (13)), such
as vehicles #19 and #20, where the number with # denotes
the vehicle order in N . Conversely, if the paths of two or
more vehicles do not intersect, they are allowed to travel
inside the MZ at the same time, such as vehicles #4 and
#5. Moreover, the effectiveness of rear-end collision avoidance
can be identified as the solution has no intersections between
trajectories of the same color throughout the CZ.

The optimal speed trajectories of the first 20 vehicles are
shown in Fig. 9, where the profiles are grouped based on the
entering direction at the CZ. As it can be seen, the speed
trajectory of a CAV highly depends on its decision di at the
intersection, which can be inferred by the change of color
between the solid and dashed parts of the lines depicting the
speed profiles. If di = 0, the path of the vehicle within the
CZ is a straight line, and in this context, the CAV accelerates
to a cruising speed value and stays at this speed until the
exit of the CZ approaches. On the other hand, if a turn is
made at the intersection, that is di = {−1, 1}, the optimal
speed profiles involve two separate phases, joined by a short
period of cruising at the speed limits for cornering inside the
MZ (e.g., vehicles #1 and #2). In some cases, the speed may
not follow the foregoing trajectories due to the compromise
on safety requirements. For example, vehicle #17 exhibits

relatively lower acceleration at the beginning compared to
others, and vehicle #11 decelerates its speed until it enters the
MZ. Vehicle #7 applies additional braking before entering the
MZ in order to leave enough space margin to allow the vehicle
ahead, #6, to complete its turn. Such a compromise is more
noticeable when the arrival times of two consecutive vehicles
are close to each other, for example under high traffic density
conditions. Moreover, as electric vehicles have recuperative
brakes, all CAVs intend to follow a regular profile that involves
acceleration to a cruise speed value, followed by a period
of constant speed cruising until the exist of CZ (for straight
running) or the entry of MZ (if turning is required) approaches,
so as to reduce total electric energy consumption [45]. A visual
demonstration of the optimal solutions can be found at the link
https://youtu.be/Xmh6pOzlSe0.

In order to investigate the impact of traffic density and the
trade-off between energy consumption and travel time, the
optimal solutions for a series of combinations of the weight
factors, W1 and W2, (under the same initial conditions) and
for different arrival rates are presented in Fig. 10. As it can
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Fig. 10. Trade-off between average battery energy consumption and average
travel time for arrival rates from 500 veh/h per lane to 1250 veh/h per lane
and for a range of (W1,W2) pairs.

be seen, the Pareto front results for four different arrival
rates indicate that an increase in travel time of approximately
20% can lead to an average fuel consumption reduction of
41.7%, while further increase in travel time can eventually
yield up to 55.6% fuel consumption reduction. These results
point out the importance of examining the energy-time trade-
off, as a small sacrifice in travel time can significantly affect
the energy efficiency. The comparison among four arrival
rates indicates that the overall optimality deteriorates as the
arrival rate increases. The reason is that a higher arrival rate
implies a higher traffic density condition, where the motions of
vehicles are more restrained by the surrounding vehicles, and
therefore, the optimal solution tends to be compromised by
collision avoidance requirements. Furthermore, the influence
of the arrival rate is more apparent when the average travel
time is small. This can be understood that with an emphasis
on the travel time minimization, the optimization encourages
the CAVs to travel at maximum speed, which yields more
restrictive solutions due to the tougher collision avoidance
constraints in such cases, and the restrictiveness rises as the

https://youtu.be/Xmh6pOzlSe0
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arrival rate increases. Finally, it has been found that further
decrease in the arrival rate below 500 veh/h makes negligible
impact on the optimality, as the traffic is sufficiently sparse
to allow free optimization of each velocity trajectory without
concession to other vehicles.

To examine the relationship between the safety margin and
energy consumption, a comparison of the average time gap and
energy consumption is made among cases of different arrival
rates while keeping the average travel time fixed. Note that the
time gap is defined in (12) and the average is taken only for the
subset of vehicles with potential for rear-end collision (Ci set).
Table III presents the results for the case of a fixed average
traveled time of 26.77 s, which is representative of cases where
arrival rate changes have an influence on energy consumption
(see Fig. 10). As it can be seen, there is an upward trend in

TABLE III
AVERAGE TIME GAP AT DIFFERENT ARRIVAL RATES WITH A FIXED
AVERAGE TRAVELED TIME 26.77 S WITH tδ = ∆s/vmax = 0.13 S.

Arrival Rate [veh/h] 500 750 1000 1250
Energy Cost [kJ] 110.93 112.97 119.95 131.34
Average time gap [s] 7.14 4.90 4.11 3.74
Minimum time gap [s] 0.17 0.15 0.14 0.13
Maximum time gap [s] 20.46 14.32 13.02 12.41

the energy cost from 111.43 kJ to 119.95 kJ as the arrival
rate increases from 500 veh/h to 1000 veh/h. Meanwhile, the
average time gap decreases from 7.14 s to 4.11 s for the same
arrival rate change. This can be understood that increased
traffic density could result in severe congestion and more
acceleration/deceleration behavior, and therefore reduced time
gap and higher energy consumption. When the arrival rate is
1250 veh/h, the energy consumption is steeply compromised
to 131.34 kJ, as also shown in Fig. 10, which is influenced
by the higher number of activation of the limiting time gap
(see tδ in (12) and also observe that the minimum time gap
for this arrival rate in Table III reaches tδ=0.13 s).

The optimality of the SOCP-UB is investigated by com-
paring its performance with SOCP-LB and SOCP-Baseline
introduced in Section IV-B. As shown in Fig. 11, the solutions
of the SOCP-UB are close to the SOCP-LB, which implies
the tightness of the linearly approximated bound shown in
Fig. 7 and the battery power shown in Fig. 6. Owing to the
increased feasibility in terms of the following distance, the
SOCP-LB as compared to the SOCP-UB can reach a more
time-efficient solution, which, however, is potentially unsafe
(infeasible). As an example, when the average energy cost
is 147 kJ/veh, the average travel time is increased by only
1.6% for the SOCP-UB as compared to SOCP-LB. It can also
be observed that when W1 ≫ W2, the energy cost becomes
negligible in the objective function, thus the optimal speed
trajectories derived by the two schemes (SOCP-LB and SOCP-
UB) are pushed to the upper speed limits, and the optimality
gap is further increased to 2.3% at an average energy cost
of 189.5 kJ/veh. On the other hand, the Pareto front of the
SOCP-UB is always below that of the SOCP-Baseline with a
maximum optimality gap at 2.4% at the same average energy
cost of 189.5 kJ/veh, which highlights the benefits of using a
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Fig. 11. Comparison of the energy-time cost trade-off between the SOCP-UB
and the benchmark solutions at an arrival rate of 750 veh/h per lane.

planning-based scheduling method instead of the FIFO policy.
In particular, when the average travel time is 24.74 s, the
SOCP-UB can save up to 21.8% energy consumption with
respect to the SOCP-Baseline. As the energy cost weight,
W2, is gradually increased, the optimality gap among the three
schemes becomes negligible. This can be understood by the
fact that the CAVs are encouraged to travel at a lower average
speed when the emphasis is on energy consumption, resulting
in large enough time gaps between CAVs so that their speed
trajectories can be freely optimized without being limited by
the safety enforcement constraints.

VI. CONCLUSIONS

In this paper, the traffic coordination problem at signal-free
traffic intersections is addressed for connected and autonomous
vehicles. The dynamics of each vehicle are modeled by a
realistic longitudinal model in conjunction with an explicitly
formulated electric powertrain system, which allows the en-
ergy consumption to be accurately estimated. The problem is
approached by a hierarchical centralized coordination scheme
that aims to minimize a weighted sum of the aggregate electric
energy consumption and traveling time required to drive
through the junction by sequentially optimizing the passing
order and explicit velocity trajectories in two stages. The
overall problem is formulated in the space domain, and in this
context, the resulting optimal control problems (OCPs) in both
stages can be respectively suitably relaxed as convex second-
order cone programming (SOCP) problems, which can be
solved to optimality efficiently using a standard optimization
solver.

Simulation results verify the validity and computational
efficiency of the solution obtained by the proposed control
scheme, which enables the method to be implemented using
current technologies. To illustrate the trade-off between energy
consumption and travel time, a range of cases with different
weighting on these two costs are examined and the Pareto
front corresponding to different combinations of the two
costs is produced. The investigation of the Pareto solutions
emphasizes the importance of optimizing their trade-off, as
a compromise of 20% in travel time could lead to up to
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41.7% in energy savings. According to the comparison with
a valid lower bounding solution of the full original problem,
the presented approximation OCP algorithm is able to achieve
feasible solutions close to this bounding solution, which
further demonstrates the tightness of the convex relaxation
employed in the proposed OCP. Finally, the method proposed
in this paper is compared to a benchmark solution commonly
employed in the literature, obtained using a simple first-in-
first-out (FIFO) policy. The proposed technique is found to
outperform the benchmark solution with up to an impressive
21.8% improvement in terms of energy-saving when travel
time in both cases is equalized, and furthermore with the same
energy consumption, the method can save up to 2.4% travel
time.
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