1,126 research outputs found

    Comparative morphology of configurations with reduced part count derived from the octahedral-tetrahedral truss

    Get PDF
    Morphology (the study of structure and form) of the octahedral-tetrahedral (octet) truss is described. Both the geometry and symmetry of the octet truss are considered. Morphological techniques based on symmetry operations are presented which enable the derivation of reduced-part-count truss configurations from the octet truss by removing struts and nodes. These techniques are unique because their Morphological origination and they allow for the systematic generation and analysis of a large variety of structures. Methods for easily determining the part count and redundancy of infinite truss configurations are presented. Nine examples of truss configurations obtained by applying the derivation techniques are considered. These configurations are structurally stable while at the same time exhibiting significant reductions in part count. Some practical and analytical considerations, such as structural performance, regarding the example reduced-part-count truss geometries are briefly discussed

    Preliminary design approach for large high precision segmented reflectors

    Get PDF
    A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time

    Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs

    Get PDF
    Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications

    The Future of Agriculture in Our Community: A Pilot Program to Increase Community Dialogue About Agricultural Sustainability

    Get PDF
    The Future of Agriculture in Our Community is a program developed to allow Pennsylvania communities to assess and address the needs of local agriculture. This article describes the program in detail and provides results from an evaluation conducted of the pilot program. Findings (n=55) suggest that the program was received very well among participants and seemed to increase community organization skills, knowledge of local agriculture, interest in agriculture and in community life, and intentions to participate in future volunteer efforts. Based on these results, recommendations are offered for those interested in pursuing similar programs

    Impedance-based arc fault determination device (IADD) and method

    Get PDF
    Embodiments according to the present invention provide an Impedance-based Arc-Fault Determination Device (IADD) and method that, when attached to an electrical node on the power system and through observations on voltage, current and phase shift with a step load change, determine the effective Thevenin equivalent circuit or Norton equivalent circuit at the point of test. The device and method determine the expected bolted fault current at the test location of interest, which enables calculation of incident energy and the assignment of a flash-hazard risk category

    Robotic-Movement Payload Lifter and Manipulator

    Get PDF
    A payload lifter/manipulator module includes a rotatable joint supporting spreader arms angularly spaced with respect to one another. A rigid arm is fixedly coupled to the joint and extends out therefrom to a tip. A tension arm has a first end and a second end with the first end being fixedly coupled to the tip of the rigid arm. The tension arm incorporates pivots along the length thereof. Each pivot can be engaged by or disengaged from the outboard end of a spreader arm based on a position of the spreader arm. A hoist, positioned remotely with respect to the module and coupled to the second end of the tension arm, controls the position of the spreader arms to thereby control the position of the rigid arm's tip. Payload lifter/manipulator assemblies can be constructed with one or more of the modules
    corecore