Tribological and Mechanical Behavior of Graphite Composites of Polytetrafluoroethylene (PTFE) Irradiated by the Electron Beam

Abstract

This research investigated the e ect of irradiation with an electron beam energy of 10 MeV in doses of 26–156 kGy on polytetrafluoroethylene (PTFE) with a 15% and 20% graphite additive. The research has shown that mechanical (compression strength, hardness, and Young’s modulus) and sclerometric (coe cient of wear micromechanism and coe cient of resistance to wear) properties improve and tribological wear decreases as graphite content increases. Electron beam irradiation increases the degree of crystallinity of both materials to a similar extent. However significant di erences in the improvement of all examined properties have been demonstrated for PTFE with higher (20%) graphite content subjected to the electron beam irradiation. This polymer is characterized by higher hardness and Young’s modulus, reduced susceptibility to permanent deformation, higher elasticity, compression strength, and above all, a nearly 30% reduction in tribological wear compared to PTFE with a 15% graphite additive. The most advantageous properties can be obtained for both of the examined composites after absorbing a dose of 104 kGy. The obtained results hold promise for the improvement of the operational life of friction couples which do not require lubrication, used for example in air compressors and engines, and for the possibility of application of these modified polymers. In particular PTFE with 20% graphite content, in the nuclear and space industry

    Similar works