In the context of neutrino factories, we review the solution of the
degeneracies in the neutrino oscillation parameters. In particular, we have set
limits to sin22θ13 in order to accomplish the unambiguous
determination of θ23 and δ. We have performed two different
analysis. In the first, at a baseline of 3000 km, we simulate a measurement of
the channels νe→νμ, νe→ντ and
νˉμ→νˉμ, combined with their respective conjugate ones,
with a muon energy of 50 GeV and a running time of five years. In the second,
we merge the simulated data obtained at L=3000 km with the measurement of
νe→νμ channel at 7250 km, the so called 'magic baseline'. In both
cases, we have studied the impact of varying the ντ detector
efficiency-mass product, (ϵντ×Mτ), at 3000 km,
keeping unchanged the νμ detector mass and its efficiency. At L=3000 km,
we found the existance of degenerate zones, that corresponds to values of
θ13, which are equal or almost equal to the true ones. These zones
are extremely difficult to discard, even when we increase the number of events.
However, in the second scenario, this difficulty is overcomed, demostrating the
relevance of the 'magic baseline'. From this scenario, the best limits of
sin22θ13, reached at 3σ, for sin22θ23=0.95,
0.975 and 0.99 are: 0.008, 0.015 and 0.045, respectively, obtained at
δ=0, and considering (ϵντ×Mτ)≈125,
which is five times the initial efficiency-mass combination.Comment: 40 pages, 18 figures; added references, corrected typos, updated Eq
(15c