research

Anomalous fermion number nonconservation: Paradoxes in the level crossing picture

Abstract

In theories with anomalous fermion number nonconservation, the level crossing picture is considered a faithful representation of the fermionic quantum number variation. It represents each created fermion by an energy level that crosses the zero-energy line from below. If several fermions of various masses are created, the level crossing picture contains several levels that cross the zero-energy line and cross each other. However, we know from quantum mechanics that the corresponding levels cannot cross if the different fermions are mixed via some interaction potential. The simultaneous application of these two requirements on the level behavior leads to paradoxes. For instance, a naive interpretation of the resulting level crossing picture gives rise to charge nonconservation. In this paper, we resolve this paradox by a precise calculation of the transition probability, and discuss what are the implications for the electroweak theory. In particular, the nonperturbative transition probability is higher if top quarks are present in the initial state.Comment: 26 pages, 6 figure

    Similar works