We examine the fate of supersymmetric flat directions. We argue that the
non-perturbative decay of the flat direction via preheating is an unlikely
event. In order to address this issue, first we identify the physical degrees
of freedom and their masses in presence of a large flat direction VEV (Vacuum
Expectation Value). We explicitly show that the (complex) flat direction and
its fermionic partner are the only light {\it physical} fields in the spectrum.
If the flat direction VEV is much larger than the weak scale, and it has a
rotational motion, there will be no resonant particle production at all. The
case of multiple flat directions is more involved. We illustrate that in many
cases of physical interest, the situation becomes effectively the same as that
of a single flat direction, or collection of independent single directions. In
such cases preheating is not relevant. In an absence of a fast non-perturbative
decay, the flat direction survives long enough to affect thermalization in
supersymmetric models as described in hep-ph/0505050 and hep-ph/0512227. It can
also ``terminate'' an early stage of non-perturbative inflaton decay as
discussed in hep-ph/0603244.Comment: 9 revtex pages, v3: expanded discussion on two flat directions, minor
modifications, conclusions unchange