research

Particle physics catalysis of thermal Big Bang Nucleosynthesis

Abstract

We point out that the existence of metastable, tau > 10^3 s, negatively charged electroweak-scale particles (X^-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during BBN. In particular, we show that the bound states of X^- with helium, formed at temperatures of about T=10^8K, lead to the catalytic enhancement of Li6 production, which is eight orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X^- does not lead to large non-thermal BBN effects, this directly translates to the level of sensitivity to the number density of long-lived X^-, particles (\tau>10^5 s) relative to entropy of n_{X^-}/s < 3\times 10^{-17}, which is one of the most stringent probes of electroweak scale remnants known to date.Comment: Some typos correcte

    Similar works

    Available Versions

    Last time updated on 05/06/2019