Lithographic processing of polymers using plasma-generated electron beams

Abstract

Includes bibliographical references.Pattern definition in polymer films is achieved using electron beams generated in soft vacuum (0.05-0.50 torr) glow discharges either on a continuous or pulsed (20-100 ns) basis. With the continuous- mode electron beam, 7- µm transmission mask features are replicated in both polymethyl methacrylate (PMMA) and polyimide resists. Using a pulsed electron-beam submicron (~0.5 µm) features are transferred from an electron-transmitting stencil mask into the PMMA. The soft-vacuum pulsed electron beam is also eminently suited for polymer stabilization. Pulsed electron-beam hardening of 0.05-3.5- µm-thick AZ-type and MacDermid resist patterns is also demonstrated with hardened resist patterns stable to temperatures between 200° and 350°C. The demonstrated replication and pattern stabilization technique may be applicable in microelectronics packaging lithography where the resist thickness is substantial, linewidths are 1-10 µm, and registration requirements are less stringent.This work was supported by the National Science Foundation (Quantum Electrorncs Waves and Beams) under Contract No. ECS-8815051, the Colorado Advanced Technology Institute, the Hewlett Packard Corporation, the Applied Electron Corporation, the IBM Corporation, and by MIS Buckbee-Mears of St. Paul, MN

    Similar works