research

Family Structure of Leptons and Their Currents of an Axial Vector Nature

Abstract

Each of neutrinos has a non - zero mass and regardless of whether it is a Dirac or a Majorana mass, can possess both anapole and electric dipole moments. Between their form factors appears a connection, for example, at the longitudinal neutrinos scattering on spinless nuclei. We discuss a theory, in which a mass consists of vector and axial - vector components responsible for separateness of leptonic current into the vector and axial - vector parts of the same charge or dipole moment. Such a model can explain the absence of truly neutral neutrinos vector interactions and the availability of an axial - vector structure of a Majorana mass. Thereby it relates the two neutrinos of a different nature. We derive an equation which unites the masses to a ratio of the anapole and electric dipole form factors of any lepton and its neutrino as a consequence of their unification in families of doublets and singlets. This testifies in favor of the existence of the left (right) dileptons and paradileptons of the axial - vector currents. Each of them answers to conservation of an axial - vector charge and any lepton flavor. Therefore, an axial - vector mass, anapole and electric dipole moment of the neutrino become proportional respectively to an axial - vector mass, anapole and electric dipole moment of a particle of the same families.Comment: 19 pages, LaTe

    Similar works

    Full text

    thumbnail-image

    Available Versions