Abstract

Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.This work was supported by the Spanish Ministry of Science and Innovation (SAF2012-38140; BIO2011-25039); Fondo de Investigación Sanitaria (PI10/00587; PI11/3035; and Red HERACLES RD06/0009, RD12/0042/0014); FEDER Funds; Generalitat de Catalunya (SGR05-266; SGR09-760); and Fundació la Marató de TV3 (100310). M.A.V. is the recipient of an ICREA Academia Award

    Similar works

    Full text

    thumbnail-image