research

Aspects of the confinement mechanism in Coulomb-gauge QCD

Abstract

Phenomenological consequences of the infrared singular, instantaneous part of the gluon propagator in Coulomb gauge are investigated. The corresponding quark Dyson-Schwinger equation is solved, neglecting retardation and transverse gluons and regulating the resulting infrared singularities. While the quark propagator vanishes as the infrared regulator goes to zero, the frequency integral over the quark propagator stays finite and well-defined. Solutions of the homogeneous Bethe-Salpeter equation for the pseudoscalar and vector mesons as well as for scalar and axial-vector diquarks are obtained. In the limit of a vanishing infrared regulator the diquark masses diverge, while meson properties and diquark radii remain finite and well-defined. These features are interpreted with respect to the resulting aspects of confinement for colored quark-quark correlations.Comment: 4 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020