Background: Therapy resistance is a great challenge in cancer treatment. Among numerous factors, cell adhesion to extracellular matrix is a well-known determinant of radiochemo-resistance. It has been shown that targeting focal adhesion proteins (FAPs), e.g. β1 integrin, enhances tumor cell radio(chemo)sensitivity in various entities such as head and neck squamous cell carcinoma (HNSCC), lung carcinoma, glioblastoma, breast carcinoma and leukemia. Previous studies demonstrated a functional crosstalk between specific FAPs and DNA repair processes; however, the molecular circuitry underlying this crosstalk remains largely unsolved. Hence, this study in HNSCC aimed to identify alternative FAPs associated with DNA damage repair mechanisms and radioresistance. Materials and Methods: A novel 3D High Throughput RNAi Screen (3DHT-RNAi-S) using laminin-rich extracellular matrix (lrECM) was established to determine radiation-induced re-sidual DNA double strand breaks (DSBs; foci assay) and clonogenic radiation survival. In the screen, we used UTSCC15 HNSSC cells stably expressing the DSB marker protein 53BP1 tagged to pEGFP. Validations were performed in 10 additional HNSCC cell lines (Cal33, FaDu, SAS, UTSCC5, UTSCC8, UTSCC14, UTSCC15, UTSCC45 and XF354fl2) grown in 3D lrECM. Immunofluorescence staining, immunoblotting, chromatin fractionation were utilized to evaluate protein expression, dynamics and kinetics post irradiation. Investigations of molecular mechanisms of DNA repair and radio(chemo)resistance employed DSB repair reporter assays for non-homologous end joining (NHEJ) and homologous recombination (HR), cell cycle analysis, chromatin fractionation levels evaluation and kinase activity profiling (PamGene) upon protein knockdown in combination with/-out X-ray exposure. Foci assay and clonogenic survival assay were performed after single or multiple knockdowns of synemin and associated proteins such as DNA-PKcs and c-Abl. Protein-protein interactions between synemin and associated proteins were determined using immunoprecipitation and proximity ligation assay. Mutant/depletion constructs of synemin (ΔLink-Tail, ΔHead-Link, Synemin_301-961, Synemin_962-1565, S1114A and S1159A) were generated in order to identify essential synemin’s sites controlling DNA repair functions. Results: Among the targets found in the 3DHT-RNAi-S, synemin was one of the most promising FAP candidates to determine HNSCC cell survival and DNA damage repair. Synemin silencing radiosensitized HNSCC cells, while its exogenous overexpression induced radio-protection. Radiation induced an increased synemin/chromatin interaction and a marked ac-cumulation of synemin in the perinuclear area. Intriguingly, synemin depletion elicited a 40% reduction in NHEJ activity without affecting HR or Alt-EJ. In line, ATM, DNA-PKcs and c-Abl phosphorylation as well as Ku70 expression strongly declined in synemin depleted and irra-diated cells relative to controls, whereas an opposite effect was observed under synemin overexpression. Single, double and triple depletion of synemin, DNA-PKcs and c-Abl resulted in a similar radiosensitizing effect and DSB levels as detected upon single knockdown of synemin, describing its upstream role. In kinome analysis, tyrosine kinases showed signifi-cantly reduced activity after synemin silencing relative to controls. Furthermore, immunoprecipitation assays revealed a protein complex formed between synemin, DNA-PKcs and c-Abl under pre- and post-irradiation conditions. This protein complex dispersed when ATM was pharmacologically inhibited, implying synemin function to be dependent on ATM kinase activity. By means of the different mutation/deletion constructs of synemin, the phosphorylation site at serine 1114 located on the distal portion of synemin’s tail was identified as essential protein-protein interaction site for synemin’s function in DNA repair. Conclusions: The established 3DHT-RNAi-S provides a robust screening platform for identifying novel targets involved in therapy resistance. Based on this screen and detailed mechanistic analyses, the intermediate filament synemin was discovered as a novel important determinant of DNA repair, tyrosine kinase activity and radiochemoresistance of HNSCC cells. These results further support the notion that DNA repair is controlled by cooperative interactions between nuclear and cytoplasmic proteins