Fatigue strength assessment of cut edges considering material strength and cutting quality

Abstract

Abstract In the present study, statistical analysis for previously reported cut edge fatigue test results is performed. Experimental fatigue tests are conducted for machined, plasma, and fiber laser-cut S960 edges to verify the effect of yield strength and cut edge quality, and to study the effect of the cutting method on fatigue performance. Experimental fatigue tests were complemented with hardness and residual stress measurements and metallurgical analyses with electron backscatter diffraction (EBSD) to characterize cut edge fatigue properties and to verify statistical analysis findings. The results show that cut edges can be divided into high- and low-quality categories. On the basis of these high- and low-quality categories, material strength, and applied cutting methods, FAT classes and recommended fatigue design practices are proposed

    Similar works

    Full text

    thumbnail-image