Context-aware incremental learning-based method for personalized human activity recognition

Abstract

Abstract This study introduces an ensemble-based personalized human activity recognition method relying on incremental learning, which is a method for continuous learning, that can not only learn from streaming data but also adapt to different contexts and changes in context. This adaptation is based on a novel weighting approach which gives bigger weight to those base models of the ensemble which are the most suitable to the current context. In this article, contexts are different body positions for inertial sensors. The experiments are performed in two scenarios: (S1) adapting model to a known context, and (S2) adapting model to a previously unknown context. In both scenarios, the models had to also adapt to the data of previously unknown person, as the initial user-independent dataset did not include any data from the studied user. In the experiments, the proposed ensemble-based approach is compared to non-weighted personalization method relying on ensemble-based classifier and to static user-independent model. Both ensemble models are experimented using three different base classifiers (linear discriminant analysis, quadratic discriminant analysis, and classification and regression tree). The results show that the proposed ensemble method performs much better than non-weighted ensemble model for personalization in both scenarios no matter which base classifier is used. Moreover, the proposed method outperforms user-independent models. In scenario 1, the error rate of balanced accuracy using user-independent model was 13.3%, using non-weighted personalization method 13.8%, and using the proposed method 6.4%. The difference is even bigger in scenario 2, where the error rate using user-independent model is 36.6%, using non-weighted personalization method 36.9%, and using the proposed method 14.1%. In addition, F1 scores also show that the proposed method performs much better in both scenarios that the rival methods. Moreover, as a side result, it was noted that the presented method can also be used to recognize body position of the sensor

    Similar works

    Full text

    thumbnail-image