Abstract

Abstract Regular year-round exercise is recommended for patients with coronary artery disease (CAD). However, the combined effects of cold and moderate sustained exercise, both known to increase cardiac workload, on cardiovascular responses are not known. We tested the hypothesis that cardiac workload is increased, and evidence of ischemia would be observed during exercise in the cold in patients with CAD. Sixteen men (59.3 ± 7.0 yr, means ± SD) with stable CAD each underwent 4, 30 min exposures in a randomized order: seated rest and moderate-intensity exercise [walking, 60%–70% of max heart rate (HR)] performed at +22°C and −15°C. Systolic brachial blood pressure (SBP), HR, electrocardiogram (ECG), and skin temperatures were recorded throughout the intervention. Rate pressure product (RPP) and ECG parameters were obtained. The combined effects of cold and submaximal exercise were additive for SBP and RPP and synergistic for HR when compared with rest in a neutral environment. RPP (mmHg·beats/min) was 17% higher during exercise in the cold (18,080 ± 3540) compared with neutral (15,490 ± 2,940) conditions (P = 0.001). Only a few ST depressions were detected during exercise but without an effect of ambient temperature. The corrected QT interval increased while exercising in the cold compared with neutral temperature (P = 0.023). Recovery of postexercise blood pressure was similar regardless of temperature. Whole body exposure to cold during submaximal exercise results in higher cardiac workload compared with a neutral environment. Despite the higher RPP, no signs of myocardial ischemia or abnormal ECG responses were observed. The results of this study are useful for planning year-round exercise-based rehabilitation programs for stable CAD patients

    Similar works

    Full text

    thumbnail-image