Cosmogenic neutrinos reach the Earth with energies around 10^9 GeV, and their
interactions with matter will be measured in upcoming experiments (Auger,
IceCube). Models with extra dimensions and the fundamental scale at the TeV
could imply signals in these experiments. In particular, the production of
microscopic black holes by cosmogenic neutrinos has been extensively studied in
the literature. Here we make a complete analysis of gravity-mediated
interactions at larger distances, where they can be calculated in the eikonal
approximation. In these processes a neutrino of energy E_\nu interacts
elastically with a parton inside a nucleon, loses a small fraction y of its
energy, and starts a hadronic shower of energy y E_\nu << E_\nu. We analyze the
ultraviolet dependence and the relevance of graviton emission in these
processes, and show that they are negligible. We also study the energy
distribution of cosmogenic events in AMANDA and IceCube and the possibility of
multiple-bang events. For any neutrino flux, the observation of an enhanced
rate of neutral current events above 100 TeV in neutrino telescopes could be
explained by TeV-gravity interactions. The values of the fundamental scale of
gravity that IceCube could reach are comparable to those to be explored at the
LHC.Comment: 10 pages, 7 figures; new section on air showers added, version to be
publishe