Abstract
This dissertation presents complete parameterizations for a three-dimensional (3-D) geometry-based stochastic radio channel model (GSCM) at 10 GHz based on measurement campaigns. The thesis is divided into the following main parts: radio channel measurements, the characterization of model parameters, and model validation.
Experimental multiple-input multiple-output (MIMO) channel measurements carried out in two-story lobby and urban small cell scenarios are first described. The measurements were performed with a vector network analyzer and dual polarized virtual antenna arrays with a bandwidth over 500 MHz. The measurement data was post-processed using the ESPRIT algorithm and the post-processed data was verified using a semi-deterministic map-based model. The results showed a good match between estimated and modeled multipath components (MPCs). In addition, single-input single-output outdoor-to-indoor measurements were executed through a standard multi-pane glass window and concrete wall.
A statistical analysis was carried out for defining full 3-D characterization of the propagation channel in both line-of-sight (LOS) and non-line-of-sight (NLOS) propagation conditions. The delay and angular dispersions of MPCs are smaller in comparison to lower frequency bands due to the higher attenuation of the delayed MPCs. Moreover, specular reflection is observed to be the more dominant propagation mechanism in comparison to diffuse scattering, leading to smaller cluster angle spreads in comparison to lower frequency bands. The penetration loss caused by a standard multi-pane glass window is on the same level as in the lower frequency bands, whereas the loss caused by the concrete wall is a few dBs higher than at lower frequency bands.
Finally, the GSCM with determined parameters is validated. A MIMO channel was reconstructed by embedding 3-D radiation patterns of the antennas into the propagation path estimates. Equivalently the channel simulations were performed with a quasi deterministic radio channel generator (QuaDRiGa) using the defined parameters. The channel capacity, Demmel condition number, and relative condition numbers are used as the comparison metrics between reconstructed and modeled channels. The results show that the reconstructed MIMO channel matches the simulated MIMO channel well.Tiivistelmä
Tämä väitöskirja esittää parametroinnit kolmiulotteiselle geometriaan perustuvalle stokastiselle radiokanavamallille 10 GHz:n taajuusalueella perustuen mitattuun radiokanavaan. Väitöskirja koostuu kolmesta pääalueesta: radiokanavamittaukset, radiokanavamallin parametrien määrittäminen ja mallin validointi.
Aluksi kuvataan kaksikerroksisessa aula ja kaupunkipiensolu ympäristöissä monilähetin monivastaanotin (MIMO) järjestelmällä tehdyt kanavamittaukset. Mittaukset tehtiin vektoripiirianalysaattorilla ja kaksoispolaroiduilla virtuaaliantenniryhmillä 500 MHz kaistanleveydellä. Mittausdata jälkikäsiteltiin käyttämällä ESPRIT-algoritmia ja jälkikäsitelty data varmennettiin osittain deterministisellä mittausympäristön karttaan pohjautuvalla radiokanavamallilla. Tulokset osoittivat hyvän yhteensopivuuden mitattujen ja mallinnettujen moniteiden välillä. Lisäksi toteuttiin yksi-lähetin yksi-vastaanotin mittaukset ulko-sisä etenemisympäristössä monikerroksisen lasin ja betoniseinän läpi.
Tilastollinen analyysin avulla määritettiin täysi kolmiulotteinen kuvaus radioaallon etenemiskanavasta näköyhteys ja näköyhteydettömässä tilanteissa. Moniteiden suuremmista vaimennuksista johtuen viive ja kulmahajonnat ovat pienemmät verrattaessa matalempiin taajuuksiin. Peiliheijastus on diffuusisirontaa merkittävämpi radioaallon etenemismekanismi johtaen pienempiin klustereiden kulmahajeisiin matalempiin taajuuksiin verrattuna. Monikerroksisen lasin läpäisyvaimennus on samankaltainen kuin alemmilla taajuuksilla, kun sitä vastoin betoniseinän vaimennus on muutaman desibelin suurempi kuin alemmilla taajuuksilla.
Lopulta geometriaan perustava stokastinen radiokanavamalli validoidaan määritellyillä parametreilla. MIMO kanava uudelleen rakennetaan lisäämällä kolmiulotteiset antennien säteilykuviot estimoituihin radioaallon etenemisteihin. Vastaavasti radiokanava simuloidaan näennäisesti deterministisellä radiokanavageneraattorilla (QuaDRiGa) käyttäen määriteltyjä mallin parametreja. Kanavakapasiteettia, Demmel ehtolukua ja suhteellista ehtolukua käytetään vertailumittareina uudelleen rakennetun ja simuloidun kanavan välillä. Tulosten perusteella uudelleen rakennettu MIMO kanava on yhteensopiva simuloidun radiokanavan kanssa