Abstract
This thesis describes the application of Low Coherence Interferometry (LCI) and Optical Coherence Tomography (OCT) in paper measurements. The developed measurement system is a combination of a profilometer and a tomographic imaging device, which makes the construction versatile and applicable in several paper measurement applications. The developed system was first used to measure the surface structure of paper.
Different grades of paper were selected to provide maximum variation in surface structure. The results show that the developed system is capable of measuring grades of paper from rough base paper to highly coated photo printing paper.
To evaluate the developed system in surface characterization, the roughness parameters of five laboratory-made paper samples measured with the developed system and with a commercial optical profilometer were compared. A linear correlation was found with roughness parameters Ra and Rq.
Next, the surface quality of paper was evaluated using LCI, a Diffractive Optical Element Based Glossmeter (DOG), and a commercial glossmeter. The results show linear correlation between Ra and gloss measured with the commercial glossmeter. The roughness Ra and averaged gloss measured with the DOG didn't give such a correlation, but a combination of these techniques provided local properties of gloss and surface structure, which can be used to evaluate the local surface properties of paper.
In the next study, determination of the filler content of paper using OCT is discussed. The measurement results show clear correspondence of the slope of the averaged logarithmic fringe signal envelope and the filler content.
The last studies focus on 2D and 3D imaging of paper using OCT and begin with imaging of a self-made wood fiber network. The visibility of the fibers was clear. Next, several refractive index matcing agents are studied by means of light transmittance and OCT measurements to find the best possible agent for enhancing the imaging depth of OCT in paper. Benzyl alcohol was found to have the best possible combination of optical, evaporation, and sorption characteristics, and it is applied in 2D and 3D visualizations of copy paper