Abstract

Infertility affects between 2.5% and 12% of couples worldwide, with male factor infertility solely accounting for 20% to 30% and contributing to 50% of the overall infertility cases [1]. In the United States alone, infertility affects 9.5% of men [2]. The clinical evaluation of male infertility is based on the semen analysis where the results can significantly influence the diagnostic interpretation and management. While many clinicians rely on semen parameters as a surrogate marker of a man’s ability to father a child, the results of semen analysis should, however, be interpreted with caution considering its inherent limitations [3,4]. A properly performed semen analysis and an adequate clinical examination of the male along with questions regarding current medical conditions and lifestyle circumstances that could affect sample quality, can provide valuable information related to a man’s fertility potential. This information facilitates a better understanding of the physiology of the reproductive organs and the underlying causes of dysfunction [5- 7]. However, manual semen analysis has its inherent challenges associated with high subjectivity, lack of standardization, inadequate quality control and quality assurance, as well as inadequate assessment of competency, and training of laboratory personnel performing the test [7,8]. Unlike sperm concentration and motility, sperm morphology has even more subjectivity in reporting the results, with increased intra- and intervariability [8-10]. Therefore, quality control is imminent in preventing such variations and retaining uniformity in all assessments by all operators. This includes preanalytical (test requisition, correct sample collection, delivery of sample), analytical (mixing and loading of sample, correct preparation of smears or calculation of results), and post-analytical (correct reporting of results to the clinician) indicators. To minimize errors, daily, weekly, or monthly quality control of reagents and equipment is imperative

    Similar works