CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
The complex genetic region conferring transferable antibiotic resistance in multidrug-resistant and extremely drug-resistant Klebsiella pneumoniae clinical isolates
Authors
A. Karmostaji
S. Mirkalantari
M.T. Moghadam
A. Shariati
Publication date
1 January 2020
Publisher
Abstract
Antibiotic resistance due to transferable resistance genes is one of the most important concerns in Klebsiella pneumoniae isolated from nosocomial infections. Eighty-eight K. pneumoniae isolates were confirmed through biochemical methods. In addition, antimicrobial susceptibility testing was performed using a disc-diffusion method. Extended-spectrum β-lactamase production among the isolates was screened using a double-disc synergism test, and the resistance genes were identified using PCR. The eight loci for multiple-locus variable number tandem repeat analysis (MLVA) genotyping were selected along with the primers. According to our findings, neomycin (5; 5.6) and carbapenems (10; 11.3) showed the most remarkable inhibitory effect but co-trimoxazole (46; 52.2) was the least effective antibiotic against K. pneumoniae isolates. blaCTX-M-1, qnrA, qnrB, qnrS, intI, intII, aac3 and aac6 were detected in 30 (34), 5 (5.6), 29 (32.9), 23 (26.1), 88 (100), 72 (81.8), 26 (29.5) and 28 (31.8) of the 88 isolates, respectively. But none of the K. pneumoniae isolates expressed the intIII gene. Using MLVA, 23 MLVA types and eight clusters were identified. Extended-spectrum β-lactamase-producing K. pneumoniae isolates were classified into two clonal complexes. Effective strategies for infection control should be applied to monitor and control the spread of multidrug-resistant isolates by the resistance genes located on the mobile genetic elements. © 202
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
eprints Iran University of Medical Sciences
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.iums.ac.ir:23311
Last time updated on 01/12/2020