CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Photocatalytic oxidation of benzene by ZnO coated on glass plates under simulated sunlight
Authors
M.H. Firooz
A.J. Jafari
R.R. Kalantari
M. Kermani
Publication date
1 January 2019
Publisher
Abstract
The photocatalytic oxidation of benzene by ZnO nanoparticles coated on glass plates was studied under simulated sunlight. ZnO nanoparticles were coated on three glass plates by heat attachment method. To evaluate the photocatalytic removal of benzene, coated plates were irradiated by metal halide lamp in a rectangular reactor in batch mode. The effect of initial pollutant concentration, temperature, relative humidity, irradiation time, concentration of zinc oxide suspension, were assessed. The surface morphology and structure of ZnO nanoparticles and ZnO coated on glass plates were characterized by scanning electron microscopy, X-ray diffraction and field emission scanning electron microscopy. Sampling and analysis of benzene were performed according to NIOSH method. To analyze the concentration of benzene, gas chromatography with flame ionization detector (GC-FID) was used. Results indicated that photocatalytic process by ZnO under irradiation of metal halide lamp could remove benzene at optimum experimental conditions. Coating of glass plates by ZnO suspension, resulted in 57 removal of benzene as concentration of 50 ppm at 45 °C, and relative humidity of 40 after 240 min irradiation of metal halide lamp. Results indicated that photocatalytic oxidation process by ZnO nanoparticles can be used as a proper and environmentally friendly method for removing low concentrations of benzene from polluted air under simulated sunlight. © 2018, Institute of Chemistry, Slovak Academy of Sciences
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
eprints Iran University of Medical Sciences
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.iums.ac.ir:14860
Last time updated on 01/12/2020