Determining glioblastoma proteome changes in response to lateral ventricle neural stem cells

Abstract

Glioblastoma (GBM) is the most common and malignant primary tumor in adults. When GBM tumors are located close to the lateral ventricle they display a more aggressive recurrence pattern and negatively impact patient survival. These findings suggest the involvement of the subventricular zone neurogenic niche in GBM malignancy. To define the inter-cellular communication between neural stem cells and GBM cells, we optimized a tool to determine cell-specific proteomic changes of GBM cells in response to neural stem cell proximity. We cloned the mutated methionyl-tRNA synthetase (MetRS) gene into the lentiviral plasmid MetRS puro. MetRS allows for incorporation of azide-tagged methionine analog azidonorleucine (ANL) into newly formed proteins, effectively labeling proteins synthesized by expressing cells. We utilized the pLKO.1 vector backbone allowing puromycin resistance as a selection method. The MetRS L274 modification was confirmed, as only MetRS-transduced cells of both commercial HEK and primary GBM1A cell lines selectively incorporated ANL. Following verification, we successfully packaged the plasmid into a lentivirus. We transduced primary human fetal neural stem cell (hfNSC) and GBM lines and selected the MetRS-expressing cells by puromycin exposure. After 96 hours, wild type (WT) cells died while successfully transduced cells exhibited resistance and the ANL-compatible MetRS enzyme. Co-cultures consisting of MetRS-transduced GBM and WT hfNSCs were used to simulate a similar environment of glioblastoma neighboring lateral ventricles. Proteome Profiler results showed a significant downregulation of an angiogenesis inhibitor and upregulation of malignancy promoting proteins in GBM1A. Going forward, this analysis method will be used for cell-specific proteomics in vivo

    Similar works