research

Improved η\eta^\prime-Meson Distribution Amplitudes from Inclusive Υ(1S)ηX\Upsilon (1S) \to \eta^\prime X Decay

Abstract

We calculate the η\eta^\prime-meson energy spectrum in the Υ(1S)ηgggηX\Upsilon (1S) \to \eta^\prime g g g \to \eta^\prime X decay in the leading-order perturbative QCD in the static-quark limit for the orthoquarkonium.Our principal result is the extraction of parameters of the ηgg\eta^\prime g^* g effective vertex function (EVF) involving a virtual and a real gluon from the available data on the hard part of the η\eta^\prime-meson energy spectrum. The perturbative-QCD based framework provides a good description of the available CLEO data, allowing one to constrain the lowest Gegenbauer coefficients B2(q)B^{(q)}_2 and B2(g)B^{(g)}_2 of the quark-antiquark and gluonic distribution amplitudes of the η\eta^\prime-meson. The resulting constraints are combined with the existing ones on these coefficients from an analysis of the ηγ\eta^\prime - \gamma transition form factor and the requirement of positivity of the EVF, yielding B2(q)(μ02)=0.008±0.054B^{(q)}_2 (\mu_0^2) = -0.008 \pm 0.054 and B2(g)(μ02)=4.6±2.5B^{(g)}_2 (\mu_0^2) = 4.6 \pm 2.5 for μ02=2GeV2\mu_0^2 = 2 GeV^2. This reduces significantly the current uncertainty on these coefficients.Comment: 4 pages, 4 figures, use svjour.cls and svepj.clo; talk given at the International Europhysics Conference on High-Energy Physics (HEP 2003), 17-23 July 2003, Aachen, Germany. Title change

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019