Gaussian sum-rules, which are related to a two-parameter Gaussian-weighted
integral of a hadronic spectral function, are able to examine the possibility
that more than one resonance makes a significant contribution to the spectral
function. The Gaussian sum-rules, including instanton effects, for scalar
gluonic and non-strange scalar quark currents clearly indicate a distribution
of the resonance strength in their respective spectral functions. Furthermore,
analysis of a two narrow resonance model leads to excellent agreement between
theory and phenomenology in both channels. The scalar quark and gluonic
sum-rules are remarkably consistent in their prediction of masses of
approximately 1.0 GeV and 1.4 GeV within this model. Such a similarity would be
expected from hadronic states which are mixtures of gluonium and quark mesons.Comment: latex2e using amsmath, 11 pages, 4 eps figures embedded in latex
file. Write-up of presentation for the 2003 SUNY IT (Utica) workshop on
scalar meson