A spinning black hole with a much smaller black hole companion forms a
fundamental gravitational system, like a colossal classical analog to an atom.
In an appealing if imperfect analogy to atomic physics, this gravitational atom
can be understood through a discrete spectrum of periodic orbits. Exploiting a
correspondence between the set of periodic orbits and the set of rational
numbers, we are able to construct periodic tables of orbits and energy level
diagrams of the accessible states around black holes. We also present a closed
form expression for the rational q, thereby quantifying zoom-whirl behavior in
terms of spin, energy, and angular momentum. The black hole atom is not just a
theoretical construct, but corresponds to extant astrophysical systems
detectable by future gravitational wave observatories.Comment: 8 page