research

Neutrinos from the Big Bang

Abstract

The standard Big Bang cosmology predicts the existence of an, as yet undetected, relic neutrino background, similar to the photons observed in the cosmic microwave background. If neutrinos have mass, then such relic neutrinos are a natural candidate for the dark matter of the universe, and indeed were the first particles to be proposed for this role. This possibility has however been increasingly constrained by cosmological considerations, particularly of large-scale structure formation, thus yielding stringent bounds on neutrino masses, which have yet to be matched by laboratory experiments. Another probe of relic neutrinos is primordial nucleosynthesis which is sensitive to the number of neutrino types (including possible sterile species) as well to any lepton asymmetry. Combining such arguments with the experimental finding that neutrino mixing angles are large, excludes the possibility of a large asymmetry and disfavours new neutrinos beyond those now known.Comment: Invited contribution for a special issue of the Proceedings of the Indian National Academy of Sciences, 20 pages, 5 figures (LaTeX); revised to include discussion of other post-WMAP paper

    Similar works