From in vitro evolution to protein structure

Abstract

In the nanoscale, the machinery of life is mainly composed by macromolecules and macromolecular complexes that through their shapes create a network of interconnected mechanisms of biological processes. The relationship between shape and function of a biological molecule is the foundation of structural biology, that aims at studying the structure of a protein or a macromolecular complex to unveil the molecular mechanism through which it exerts its function. What about the reverse: is it possible by exploiting the function for which a protein was naturally selected to deduce the protein structure? To this aim we developed a method, called CAMELS (Coupling Analysis by Molecular Evolution Library Sequencing), able to obtain the structural features of a protein from an artificial selection based on that protein function. With CAMELS we tried to reconstruct the TEM-1 beta lactamase fold exclusively by generating and sequencing large libraries of mutational variants. Theoretically with this method it is possible to reconstruct the structure of a protein regardless of the species of origin or the phylogenetical time of emergence when a functional phenotypic selection of a protein is available. CAMELS allows us to obtain protein structures without needing to purify the protein beforehand

    Similar works