Whole-rock K-Ar Model and Isochron, and Rd-Sr and Pb-Pb Isochron, Dating of the Somerset Dam Layered Mafic Intrusion, Australia

Abstract

The Somerset Dam layered mafic intrusion in southeast Queensland, Australia, has been conventionally dated as Late Triassic by the apparently successful application of radioisotopic dating techniques. Mineralogical, geochemical and isotopic evidence indicates that all of this gabbro intrusion’s cyclic units were derived coevally from the same parental basaltic magma, with an initial homogeneous isotopic mixture ideal for yielding concordant isochron ages. However, newly obtained K-Ar, Rb-Sr, Sm-Nd and Pb-Pb radioisotopic data from 15 whole-rock samples (representing all gabbro macrolayers in four of the intrusion’s cyclic units) yield discordant isochron “ages”, although the excellent-fitting 15-point K-Ar isochron suggests the resultant 174±8 Ma “age” (Middle Jurassic) should be regarded as the revised conventional age of the layered intrusion. Nevertheless, it is concluded that these discordances between the radioisotope systems are likely due to changes in their decay rates in the past, with the longer halflife beta-emitter 87Rb being accelerated more and thus yielding an older “age”. Furthermore, the Sr, Nd and Pb isotopes indicate the parental basaltic magma was derived from a depleted mantle source, while the large spread of Nd TDM “ages” suggests accelerated radioisotopic decay rates during the partial melting and magma ascent. It is concluded that the Somerset Dam layered mafic intrusion has inherited the radioisotopic signature of its mantle source, and so the conventional radioisotopic dating techniques do not provide its true age

    Similar works