unknown

Propolis potential activity against Candida tropicalis adhered cells and its biofilms

Abstract

Objectives: Invasive fungal infections, such as candidiasis, represent a public health problem of major importance, and Candida tropicalis has been highlighted among the main agents of candidiasis. One of the major contributions to C. tropicalis virulence is its versatility in adapting to a variety of different habitats and the formation of surface attached microbial communities known as biofilms. Moreover, from the clinical perspective, the most important feature of Candida biofilms is its role in increasing tolerance to conventional antifungal therapy. This scenario encourages the search for alternative therapies. Natural matrixes, such as propolis, compromise a multitude of bioactive properties, in particular phenolic extracts have evidenced significant antimicrobial properties against a multiple of opportunist invaders, including Candida species. Thus, the main objective of the present work was to evaluate the potential antifungal effect of propolis against Candida tropicalis biofilms. Methods: This study was conducted with four strains of C. tropicalis and one reference strain, from the American Type Culture Collection (ATCC 40042). Biofilm formation were carried out on 96-well microplates containing a cellular suspension of 1x105 cells/mL and incubated for 24 h at 37°C. Pre-formed C. tropicalis biofilms were treated with propolis (ranging from 0.47 to 1.42 mg/ml), during 24 h at 37°C and its effect assessed through quantification of the number of colony forming unit (CFU). Results: It was evident that all C. tropicalis strains tested were able to form biofilm and that propolis was able to reduce around 40% and 50% of the pre-formed biofilm. Moreover, in general the propolis effect was similar among all the C. tropicalis clinical isolates strains Conclusions: These data are promising, since they open important perspectives regarding new antifungal agents, much more effective and safer than the currently available to treat and to prevent C. tropicalis infections

    Similar works