research

Disc mechanical characteristics : construction of a finite element mathematical model, first results

Abstract

Computational mechanics is an invaluable tool to analyze biomechanical systems, either in healthy or degenerative conditions, and to improve our understanding on the events that can trigger trauma or diseases, to design new medical devices to restore working conditions, or even to point out treatment techniques. Numerical methods in general, and the Finite Elements Analysis (FEA) in particular, if properly built and used, can allow an inside view, a rigorous analysis and a qualitative study of any assumption, frequently too much difficult or even impossible to achieve with any in-vivo or in-vitro experimental technique. An Intervertebral Disc (IVD) is a functionally-oriented construction of several soft tissues, supporting a wide range of dynamic and static loads that generate complex stress fields, which experimental study and understanding of its biomechanical behavior is of an enormous complexity. On the one hand, human’s in-vivo study is almost impossible – due to the high degree of uncertainty in applied loads, geometric variability of individuals, complex surrounding musculoskeletal interactions, the role played by electro-chemical phenomena like osmolarity, etc – and post-mortem studies hardly provides accurate information to allow a clear and precise characterization and transposition to in-vivo biomechanics. On the other hand, due to that intrinsic complexity of the IVD, an accurate biomechanical model cannot easily be achieved. It is rather a step-by-step task where, although there are still many open questions, an important effort is being done to bring to the FEA the multi-physics behavior, and the complex interactions between them, in order to accurately model the IVD’s constitutive performance. This work is focused in the most relevant issues and phenomena that shall be taken into account in the development of an accurate biomechanical FEA model of the IVD, either in healthy or degenerated states

    Similar works