research

Bacterial cellulose : production and applications

Abstract

Bacterial cellulose (BC), excreted by Gluconacetobacter xylinus, is a unique nanofibrilar biopolymer with a wide range of applications in human and veterinary medicine, odonthology, pharmaceutical industry, biotechnological, food and paper industry. The major research activities of our research group include the following headlines: - Surface-modification of BC matrices and BC whiskers for the design of novel functional BC nanocomposite systems. This domain includes the surface-activation of BC with CBMs (Carbohydrate Binding Modules) conjugated with bioactive peptides for biomedical applications.[1] CEB-UM has already shown that the adsorption of CBM-RGD (the minimal essential cell adhesion recognition motifs) onto BC improves its ability to adsorb fibroblasts.[2] Also, research on the use of BC tubes as new guides for neuronal growth (CAPES, 3989/05-4) and, for the first time, on assessing the in vivo cytotoxicity of BC nanofibers (SFRH/BD/18418/2004), is on course. - Design of novel BC structures with tailored microporosity, for biomedical applications (SFRH/BD/48759/2008). - Engineering of electro-conductive and electro-active BC scaffolds with potential applications in neuronal growth. The embedded polymeric directionally of the BC nanofibers is expected to exhibit shear piezoelectricity which, coupled with a high in situ moldability, thrusts a promising future for novel BC-based materials such as lightweight, biodegradable electro-actives, biosensors and flexible electric displays, with a tailored oriented stiffness and strength. - Exploring the large-scale fermentation of BC. A novel bioreactor, based on a surfaceculture method was designed. A simple and low-cost piece of equipment is capable of direct nebulization of a high volume of dispersed and microparticulated subtrate over the growing bacteria. The developed system may reveal to be an interesting economic solution for the large-scale production of BC

    Similar works