research

An integrated framework for strain optimization

Abstract

The identification of genetic modifications leading to mutant strains able to overproduce compounds of industrial interest is a challenging task in Metabolic Engineering (ME). Several methods have been proposed but, to some extent, none of them is suitable for all the specificities of each particular strain optimization problem. This work proposes an integrated framework that allows its users to configure and fine tune all the various steps involved in a strain optimization strategy, including the loading of models in distinct formats, the definition of a suitable phenotype simulation method and the choice and configuration of the strain optimization engine. Moreover, it is designed to suit the needs of users skilled at programming, as well as less advanced users. The framework includes a GUI implemented as the strain optimization plug-in for the OptFlux workbench (version 3), a reference platform for ME (http://www.optflux.org). All the code is distributed under the GPLv3 licence and it is fully available (http://sourceforge.net/projects/optflux/).This work is partially funded by ERDF- European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within projects ref. COMPETE FCOMP- 01-0124-FEDER-015079 and PTDC/EBB-EBI/104235/2008. This work is also funded by National Funds through the FCT within project PEst-OE/EEI/UI0752/2011. The work of PM was supported by the FCT through the Ph.D. grant SFRH/BD/61465/2009

    Similar works