research

Simulations of Q-Ball Formation

Abstract

The fragmentation of the Affleck-Dine condensate is studied by utilizing 3+1 dimensional numerical simulations. The 3+1 dimensional simulations confirm that the fragmentation process is very similar to the results obtained by 2+1 dimensional simulations. We find, however, that the average size of Q-balls in 3+1 dimensions is somewhat larger that in 2+1 dimensions. A filament type structure in the charge density is observed during the fragmentation process. The resulting final Q-ball distribution is strongly dependent on the initial conditions of the condensate and approaches a thermal one as the energy-charge ratio of the Affleck-Dine condensate increases.Comment: 9 pages, 8 figures; corrected typos (v2,v3

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 31/03/2019