Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling

Abstract

One of the promising trends to increase the fuel and energy efficiency of gas turbines is contact cooling of cyclic air by using a twophase jet apparatus – an aerothermopressor. The rational parameters of work processes of the aerothermopressor were studied. The experimental setup was designed to simulate the aerothermopressor operation in the cooling air cycle of the gas turbine and to determine pressure losses in the aerothermopressor flow part. Based on the obtained experimental data, an empirical equation was proposed to determine the hydraulic resistance coefficient of the aerothermopressor flow part, depending on the initial pressure and the amount of water injected. The deviation of the calculated hydraulic resistance coefficient from the experimental ones is ± 25 %. The obtained results can be used in the practice of designing the aerothermopressor for gas turbine cyclic air cooling

    Similar works

    Full text

    thumbnail-image