research

νK0\nu - K^0 Analogy, Dirac-Majorana Neutrino Duality and the Neutrino Oscillations

Abstract

The intent of this paper is to convey a new primary physical idea of a Dirac-Majorana neutrino duality in relation to the topical problem of neutrino oscillations. In view of the new atmospheric, solar and the LSND neutrino oscillation data, the Pontecorvo νK0\nu - K^0 oscillation analogy is generalized to the notion of neutrino duality with substantially different physical meaning ascribed to the long-baseline and the short-baseline neutrino oscillations. At the level of CP-invariance, the suggestion of dual neutrino properties defines the symmetric two-mixing-angle form of the widely discussed four-neutrino (2+2)(2+2)-mixing scheme, as a result of the lepton charge conservation selection rule and a minimum of two Dirac neutrino fields. With neutrino duality, the two-doublet structure of the Majorana neutrino mass spectrum is a vestige of the two-Dirac-neutrino origin. The fine neutrino mass doublet structure is natural because it is produced by a lepton charge symmetry violating perturbation on a zero-approximation system of two twofold mass-degenerate Dirac neutrino-antineutrino pairs. A set of inferences related to the neutrino oscillation phenomenology in vacuum is considered.Comment: 13 pages, LaTeX. Minor modifications, new references adde

    Similar works

    Full text

    thumbnail-image

    Available Versions