research

The Phase Structure of the Weakly Coupled Lattice Schwinger Model

Abstract

The weak coupling expansion is applied to the single flavour Schwinger model with Wilson fermions on a symmetric toroidal lattice of finite extent. We develop a new analytic method which permits the expression of the partition function as a product of pure gauge expectation values whose zeroes are the Lee-Yang zeroes of the model. Application of standard finite-size scaling techniques to these zeroes recovers previous numerical results for the small and moderate lattice sizes to which those studies were restricted. Our techniques, employable for arbitrarily large lattices, reveal the absence of accumulation of these zeroes on the real hopping parameter axis at constant weak gauge coupling. The consequence of this previously unobserved behaviour is the absence of a zero fermion mass phase transition in the Schwinger model with single flavour Wilson fermions at constant weak gauge coupling.Comment: 8 pages, 2 figures, insert to figure 2 include

    Similar works