research

Deterministic Formulization of End-to-End Delay for Multicast Systems

Abstract

End-System multicasting (ESM) is a promising application-layer scheme that has been recently proposed for implementing multicast routing in the application layer as a practical alternative to the IP multicasting. Moreover, ESM is an efficient application layer solution where all the multicast functionality is shifted to the end users. However, the limitation in bandwidth and the fact that the message needs to be forwarded from host-to-host using unicast connection, and consequently incrementing the end-to-end delay of the transmission process, contribute to the price to pay for this new approach. Therefore, supporting high-speed real-time applications such as live streaming multimedia, videoconferencing, distributed simulations, and multiparty games require a sound understanding of these multicasting schemes such as IP multicast and ESM and the factors that might affect the end-user requirements. In this paper, we present both the analytical and the mathematical models for formalizing the end-to-end delay efficiency of both IP and ESM multicast systems. For the sake of the experimental verifications of the proposed models, simulation results are presented in this paper. Finally, the proposed formulization can be used to design and implement a more robust and efficient multicast systems for the future networks

    Similar works